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1. Introduction

We wish to express our gratitude for each discussants contri-

bution. It is always a pleasure when such varied perspectives

complement each other and act cohesively to form possible pro-

grams of research.

While the many suggestions and views may be treated inde-

pendently to some extent, we have noticed that there was a

directional flow of material from one topic to the next. We have

organized our rejoinder to mirror this flow, with the following

order:

�Graphical Models 

�Topological Methods 

�Dimension Reduction 

�Temporal Evolution 

1.1. Issues

We wish to thank the authors of [1] for their suggestions for

improving readability of [2]. Most of these have been imple-

mented in one form or another. The most notable changes are

the inclusions of two sections treating pyrosequencing and DNA

amplification explicitly and the addition of a few clarifying

examples.

Regarding the comment on “more integration between the

content of the article and the program mothur”, we wish to

point out that in the first paragraph of section 3, we explicitly

mentioned that the format of the article follows a typical routine

through the mothur pipeline, and frequently refer to what can

be done in mothur and the files involved. Further, we included

an appendix with the commands used, in their order of use,

with their defaults.

Finally, with respect to Kruskal’s nonmetric multidimensional

scaling, one of the coauthors of [1] received an earlier draft of

the manuscript of [2] that did not yet include our exposition of

this subject; the manuscript that was sent out to all others did.

A number of equivalent and alternative majorization algorithms

are described in [3] along with Kruskal’s original algorithm.

We would like to point to an error on our part. In our original

manuscript, we referred to the divergence measures of section

6.1 [2] as metrics; however, only the ‘eachgap’ distance is truly

a metric.

2. Graphical Models

Massam and Mudalige [1] raise the possibility of applying
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graphical models to the analysis of microbial communities, as

far as the evolutionary relationships in a phylogenetic tree are

concerned.

Rhodes and Sullivant [4] have done much work to address

this. Sullivant presented their joint work at a Field’s Institute

workshop on graphical models in April of 2012, with emphasis

on Eukaryota. The same principles apply of course to Bacteria,

but with some further complications.

With respect to massively parallel (pyro)sequencing (MPS)

data concerning Bacteria, this method cannot be applied direct-

ly, since it relies on multiple gene sites that are assumed to be

independent of each other. In MPS, a region of a single gene

is sequenced; the fidelity of the technology is not yet such that

we can have contiguous genes sequenced, and it is difficult to

determine whether contiguous genes are independent. Even

were the fidelity of MPS to improve to that extent, genes in the

bacterial genome have a habit of moving from one place to

another, so we could not guarantee the sequencing of the same

collection of genes every time.

To further complicate this approach, certain genes can be ex-

changed between bacteriums of the same or divergent species.

However, outside MPS, rigorous phylogenetic mixture mo-

dels [4] can be developed so that the relationships they deter-

mine may be used in the analysis of MPS data.

Huckeman [5] suggests RNA folding results in a sudden drop

in dimensionality. When a structure is biologically selected,

any changes to the base sequence that alters conformation gen-

erally lead to loss of functionality, and subsequent cell death.

The restriction on configuration space places a restriction on

sequence space, possibly resulting in the restriction to lower

dimensional manifolds with singularities.

The implications of preserved helices, loops, and sheets on

sequence space restrictions may possibly be formulated in the

conceptually appealing framework of graphical models.

3. Topological Methods

The concept of topology treating the distribution of microbial

communities or sequence spaces is very interesting. The picture

can change depending on method of attack, although hopeful-

ly not the results.

While considering the topology of microbial, it is important

to bear in mind that our space carries a quotient topology, in

the following sense. A microbial community can be described

as a collection of pairs (bi, λi) where λi is some DNA sequence

from bacterium bi and bi==bj ⇒ i==j. These pairs exist in some

‘environment’, which we treat as a manifold, M. The data we

have access to lies on the quotient space of M, call it Q, under

the identifications {bi~bj if λi==λj}. Thus while no longer work-

ing directly with a manifold, we still treat Q as Huckeman

suggests [5], as a manifold with singularities.

An additional complication is incurred by the process of in

vitro DNA amplification. In this process, an initial sample of

genomic DNA extracted from bacteria are duplicated; we run

the risk of “observing” the same bacterium multiple times.

3.1. Metrics

Perhaps the most obvious path towards understanding this

structure is through the development of a (pseudo) metric topol-

ogy.

In the last section of his discussion [6], Bubenik has suggest-

ed two excellent metrics. His first suggestion is to define the

distance between sequences to be the length of the path deter-

mined by a series of mutations minimizing some cost function

based on some mutation penalization schema. To some some

extent, this may already be addressed when using the eachgap

metric on aligned sequences. To see this, look to the exposition

of the Needleman-Wunsch algorithm [7] in section 4.5.1 of [2].

Each sequence alignment algorithm is based on the insertion

of gaps to minimize the cost of point mutations and insertions/

deletions between sequences; when we apply the eachgap me-

tric, the penalization is already implicit to the alignment space.

The second metric proposed by Bubenik is more appealing

from a theoretical point of view. It denies that the minimum

cost path is always the actual path taken by recognizing that

many separate series of mutations can yield the same sequence.

In this case, the associated probabilities for each mutation may

be informed by phylogenetic mixture models as discussed in

[4].

Ideally, any metric we might choose would correspond well

with a rigorously determined phylogenetic tree.

3.2. Point clouds

Heo [8] interprets MPS data as point cloud data, embeddable

in some Euclidean space. The choice of embedding affects the

geometric picture we form of this data.

For instance, the eachgap metric is a length adjusted Hamm-

ing distance between strings (with at least one identical entry),

and hence induces an isometry between the space of aligned

DNA sequences and points clouds in a manifold of globally
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zero curvature; this is clear by noting that the triangle inequali-

ty of this metric is strict when restricted to the alignment space

in question. This makes it computationally and visually appeal-

ing; however it suffers from the unreasonable assumption that

the length of a gap records the number of mutational events.

Alternatively, the least cost metric proposed by Bubenik [6]

does not exhibit zero curvature, and makes more reasonable

assumptions about the genetics involved. It is not immediately

clear to us whether his ‘Feynman’ metric induces isometry

between sequence space and Euclidean space. The relationship

between these three metrics would provide an interesting avenue

of research.

Heo raises the issue of variable sequence lengths from each

sequencing run, for each sample. After some denoising, the

standard procedure is to align all the sequences and then trim

them so that they all overlap in the same alignment region; con-

sequently much information is discarded. One wonders whether

it is right to do so. The rational is explored and empirical evi-

dence is presented in [9,10].

The length of the sequence in our space determines what

stratum it lies in. To see this, consider how MPS data is pro-

duced. The DNA sequences are all sequenced starting (or end-

ing) at the same position in a highly conserved region of the

16S gene (more generally an arbitrary gene). So there is a stre-

tch over which all sequences are nearly identical, there being

perhaps two or three distinct mutants over this region. This is

the zero dimensional stratum of our space. As the length increas-

es, sequences move onto higher dimensional strata. By tracking

how these sequences diverge from each other under a given

metric, we may form some picture of the stratified space, i.e.

manifold with singularities, on which our data lies. We could

then begin to consider geodesics, which we will discuss in sec-

tion 4.

Developing intrinsic metrics based on what sections overlap

in alignment may prove more fruitful than simply disgarding

the inconvenient parts.

3.3. Persistent homology

The emphasis on metrics is not without merit. Persistent

homology is a sort of cross between the rigidity of geometry

and plasticity of topology, and requires some variation of diver-

gence to form a filtration on the simplicial complexes over a

point cloud; metrics tend to be of greatest appeal.

We mentioned the quotient of a manifold at the beginning

of section 3. The clustering of sequences into operational tax-

onomical units (OTUs) represents further quotients. Varying

the parameter (s) we use to cluster into OTUs provides a model

application of the persistent homology machinery.

There are a few things we can explore with this tool. First,

we can investigate the overall structure of the sequence space,

assuming a uniform distribution of all possible sequences. Se-

cond, we can probe the restrictions imposed by the distribution

of a given microbial community.

Bubenik and Heo refer to two descriptors, persistence dia-

grams/Betti barcodes [11], and Bubenik’s persistence land-

scapes [12]. Persistence diagrams have a simple interpretation,

but the family of Wasserstein metrics induce Fréchet means

with no uniqueness guarantee, and we are currently aware of

no efficient algorithm capable of finding it, even though it

exists.

Bubenik landscapes are far more appealing in this regard, as

the mean is unique and easily calculated. Further, Bubenik land-

scapes permit the clustering of distributions based on their topo-

logical features. It may be noted that the persistence landscape

itself generally has no preimage in the space of persistence dia-

grams; however, it is a simple matter to find the closest persis-

tence diagram to the persistence landscape, which may provide

a candidate for the Fréchet mean.

4. Dimension Reduction

One of the ultimate goals of the preceding discourse is the

development of dimension reduction techniques specific to

MPS.

4.1. PCA

It is fairly standard in microbial ecology to count how many

bacteriums there are of each type for each sample, and to per-

form principal component analyses (PCA) on various sample

groupings. The application of PCA to MPS data suffers from

several oversights.

Due to the uncertainty of taxonomic classifications using one

or two hypervariable regions, a popular procedure is to cluster

sequences into OTUs based on some similarity criterion. We

know that, given a species of bacteria, that there are several

mutants of the hypervariable regions. We typically identify the

species with their dominant mutant. Chakravorty et al. [13]

have shown that no single region is capable of discriminating

amongst all bacteria down to the species level. Thus, when we



observe a sequence, we have a number of candidate species.

These mutants are distributed differently in related species.

When we cluster into OTUs, we lose sight of these distribu-

tions, and a loss of information is incurred; we can no longer

tell whether there is one dominant species or several. This is a

crucial point since there exist pairs of closely related species,

one of which is generally benign while the other is generally

pathogenic, for example Clostridium butyricum and Clostridi-

um botulinum [14].

4.2. Geodesic PCA

All 16S rRNA sequences bear some phylogenetic relation-

ship with each other. This clearly extends towards OTUs as

well. Thus a pair of axes spanned by OTU i and j may be intrin-

sically “closer” than to each other than they are to the axis

spanned by OTU k; the space has nonzero curvature.

Instead of assuming a Euclidean space and treating each sam-

ple as a single point, we can use the sequence counts as densi-

ties on the stratified space in which DNA sequences lie. The

previous sections suggest a program for determining the struc-

ture of this space.

Huckemann, Hotz, and Munk [15] have developed a gener-

alization of PCA based on variance maximizing geodesics of

manifolds, which is appropriate in our setting.

5. Temporal Evolution

We can in fact investigate the validity of models of temporal

evolution along the lines of shape spaces and geodesics.

MPS places us in a position to capture still frames of various

microbial communities over time, so we can witness the vari-

ous changes due to shifts in environmental pressures, through

either external (introduction of new microbes, reagents) such

as antibiotics [16] or internal (population growth, resource con-

sumption) factors.

Some caution, however, is advised. In order to use MPS, we

do need to extract some portion of the community; thus, as in

quantum theory, to observe is to disturb. The debate as to how

large a microbial community needs to be before the disruption

is deemed insignificant should be interesting.

Another application of graphical models might arise here.

Starting from a sterile environment, how does the structure of

a community change over time if we seed the environment with

Culture A and then after some period of time inoculate with

Culture B, and how would this differ with the reverse?

There is ongoing research on the divergence of a particular

strain of E. coli, begun in 1988 at Michigan State by Lenski et

al. [17]. Today there are over 50,000 generations preserved [18].

It would be interesting to perform a temporal study on these

“monocultures” to form an empirically backed picture of how

the 16S rRNA gene changes over time.

The analysis of temporal evolution of diversity may vary

well depend on the development of other methods as expound-

ed by our discussants.
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