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1. Introduction

Error correction models (ECMs) were first introduced by 
Davidson et al. [1] in a study of the relationship between in-
come and consumption in the United Kingdom. ECMs are a 
category of multiple time series models that directly estimate 
the speed at which a dependent variable returns to equilibrium 
after change in an exploratory variable. They are designed to 
capture both the short-term and long-term effects of one (or 
more) time series to another. Thus they are often used in anal-
ysis of political and economic processes. The ECMs are useful 
models when dealing with cointegrated data, but can also be 
used with stationary data. Engle and Granger [2] suggested an 
appropriate model for two or more time series that are cointe-
grated and two-step method for estimating the model. Based 
on the cointegration of two or more time series, Engle and 
Granger’s two-step ECM assumes endogeneity between the 
cointegrated time series and does not clearly distinguish de-
pendent variables from independent variables. Thus it might 
be inconsistent with some existing theories in social science.

Under this situation, we are often better off estimating a 
single equation error correction model (SEECM). The SEECM 
clearly distinguishes between dependent and exploratory vari-
ables and is appropriate for both cointegrated and long-mem-

oried, but stationary data [3]. In other words, it does not require 
cointegrated variables to provide information about the rate of 
error correction. It is applicable for long- and short-term effects 
of exploratory variables on a dependent variable even when 
the data are stationary. The concepts of error correction, equi-
librium, and long-term effects are not unique to cointegrated 
variables. Furthermore, an SEECM may provide a more useful 
modelling technique for stationary data than alternative ap
proaches (see [4] for details). Notably, the SEECM is useful 
when we have long-memoried and stationary data that shows 
causal relationship of interest. In this paper, we calculate mean 
and variance of least square estimator (LSE) of the coefficients 
in the SEECM. We compare them with those in the LRM to 
demonstrate the usefulness of the SEECM. We consider three 
cases that assume different regression settings for exploratory 
variable and error.

2. Main Results

The SEECM is defined as

	 (1)
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where  is iid error. Assuming the LRM

,

an alternative SEECM model can be written as

.	 (2)

In this Section, we will consider three cases for a given data 
,…,  as follows.

Case (i): Trend plus iid error
Consider an LRM

	 (3)

where  for ,…,  and iid error  with  and 
. Least square estimator for model (3) is given by

.

Then

 and .	 (4)

Also consider the alternative SEECM given by (2)

,

which may be rewritten as

.	 (5)

LSE for model (5) is given by

.

Note here that  and that , 
 and  for . Then

 and .	 (6)

Thus comparing (4) and (6), LSE for LRM of (3) performs 
better than LSE for SEECM (5).

In order to check the validity of the above calculation, we 
conduct a small simulation study. We generate data of size 
n = 100 via the following equation.

Then we find the LSE of the coefficient  in the above 

LRM and the alternative SEECM with the generated data. 
This experiment is repeated 100 times to obtain sample mean 
and sample variance of .

The simulation results show that  of LRM is smaller 
than that of the alternative SEECM as expected.

Case (ii): Trend plus unit root error
Consider an LRM

	 (7)

where  for ,…,  and random walk  
with  and . LSE for model (7) is given by

.

Note that  if . When using this, we have

 and .	 (8)

Indeed

Here note that

Table 1. This table reports simulation results for trend plus iid error 
model (Case (i)).

LRM AlternativeSEECM

Mean( ) 2.0000 2.0027
Var( ) 0.0001 0.0002
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Next consider an alternative SEECM

.	 (9)

LSE for model (9) is given by

.

Then

 and .	 (10)

Comparing (8) and (10), the alternative SEECM performs 
better than the LRM.

In order to check the validity of this expectation, we conduct 
a small simulation study. We generate data of size  
from the following equation.

Then we estimate the coefficient of  in the LRM and 
the alternative SEECM with the generated data. This experi-
ment is repeated 100 times to obtain sample mean and sample 
variance of . Table 2 reports the simulation results.

The simulation results show that the  of the alterna-
tive SEECM is smaller than that of the LRM as expected.

Case (iii): Stationary  plus iid error model
Consider an LRM

	 (11)

where  is stationary  and iid error  with  and 
.  and  are independent. LSE for model (11) is 

given by

.

Then

 and 

	 (12)

We assume here that

.

Also consider an alternative SEECM

This may be rewritten as

.	 (13)

LSE for model (13) is given by

.

Note here that  is stationary  with 
 and that ,  and 

 for . Then  and

.
	 (14)

Note that

Table 2. This table reports simulation results for trend plus unit error 
model (Case (ii)).

LRM AlternativeSEECM

Mean( ) 1.9913 1.9964
Var( ) 0.0138 0.0110
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and that

 and 
.

If , we have

	 (15)

Thus comparing (12) and (15), the alternative SEECM per-
forms better than the LRM if

.

For instance, if  and , then the alternative 
SEECM performs better than the LRM. If ’s are iid with 

, the LRM performs better than the alternative 
SEECM.

In order to check the validity of the above calculation, we 
conduct a small simulation study. We generate data of size 
n = 100 via the following equation.

.

Then we estimate the coefficient of  in the LRM and 
the alternative SEECM with the generated data. This experi-
ment is repeated 100 times to calculate sample mean and sam-
ple variance of . Table 3 reports the simulation results.

The simulation results show that  of the LRM is 
smaller than that of the alternative SEECM, which is expected 
in a certain condition.

In sum, alternative SEECM is preferable when trend plus 
random walk error (Case (ii)) and LRM performs better than 
alternative SEECM when trend plus iid error. On the contrary, 
LRM or alternative SEECM had better be employed depend-
ing on correlation condition of  and  (Case (iii)).
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Table 3. This table reports simulation results for stationary Xt plus 
iid error (Case (iii)).

LRM AlternativeSEECM

Mean( ) 2.0142 2.0152
Var( ) 0.0110 0.0182


