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Introduction

Recent advances in non-invasive and cutting-edge neuroim-
aging have enabled the measurement of connections between 
distant regions in the living human brain, thus, establishing a 
new field of research, i.e., human connectomics. Different 
imaging modalities allow the mapping of structural connec-
tions (axonal fiber tracts), as well as functional connections 

(correlations in time series). Individual variations in these 
connections may be related to individual variations in behav-
ior and cognition. Connectivity analysis has already led to 
several new insights about brain organization.

How far will the field be able to progress in deciphering 
long-distance connectivity patterns and in relating differences 
in connectivity to phenotypic characteristics in mentality, 

health, and disease?
In this review paper, I will discuss methods to study brain 

connectivity and its challenges, and excellent prospects for 
continuing improvements in data acquisition and analysis 
related to connectivity.

Preliminary functional magnetic resonance imaging (fMRI) 
studies were considered a success when any cortical activation 
was detected using full-field or hemifield visual stimulation 

[1,2]. Nevertheless, it was apparent from the outset that fMRI 
offered great potential for elucidating human brain function; 
developing it to the point of mapping the cortical areas.

Spontaneous fluctuations in the blood-oxygen-level depen-
dent (BOLD) signal in fMRI were an early clue that this me -
thod might enable exploration of functional connectivity (FC). 
However, there was a lack of promising methods to explore 
long-distance connections in the human brain [3].

Two methods, i.e., diffusion-weighted MRI (dMRI) and 
resting-state fMRI (R-fMRI), can be used to make strong, 
albeit indirect, inferences about brain connectivity. The first, 
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dMRI, estimates the orientation of fiber bundles in white mat-
ter, based on anisotropies in water diffusion. It provides inputs 
for tractography analyses that can be used to infer ‘structural 
connectivity’ (SC) between gray matter regions [4,5]. The sec-
ond method, R-fMRI, uses temporal correlations in the slow 
fluctuations of the BOLD fMRI signal to infer FC. R-fMRI 
serves as an indirect, but nonetheless invaluable, indicator of 
gray-matter regions that interact strongly and, in many cases, 
are connected anatomically [6-11].

A growing number of studies have revealed important 
insights through systematic analyses of whole brain connec-
tivity using fMRI. These include analyses of brain networks, 
modularity, and hubs, as well as the demonstration of connec-
tivity-based parcellation [12-18].

Despite their promise and potential, the current methods for 
assessing structural and functional connectivity face serious 
technical limitations at multiple levels. Analyses of SC must 
cope with a high incidence of false positives and false nega-
tives, combined with an inherent difficulty in making quanti-
tative estimates of connection strength [5,19,20]. Analyses of 
FC are limited by the indirect nature of neurovascular coupling 
to neural activity and the presence of confounding long-range 
correlations of vascular origin [21]. In addition, functional 
correlations reflect more than direct anatomical connectivity 

[8], as common inputs and/or interactions can influence them, 
via serially connected areas. Both approaches also face limita-
tions imposed by the difficulty of accurately parceling the brain 
into functionally distinct subdivisions (parcels) and in aligning 
data across subjects (inter-subject registration).

In this review, I survey the current state-of-the-art human 
connectomics method, including a comparison of techniques 
for mapping brain connectivity, the use of connectivity data to 
discern functionally specialized regions, the relation of struc-
tural to functional connections, and the use of network analy-
sis measures to quantitatively characterize the architecture of 
the human connectome.

Neurobiological Considerations  
and Constraints

Human brain circuitry is extraordinarily complex by any 
measure. It is also probable that specific aspects of the brain’s 
complexity may not yet be widely recognized. Behrens and 
Sporns [22] previously discussed human connectomics and 
some its properties was be listed as follows in [23,24]:

1. Scales of analysis

In vivo neuroimaging enables exploration of connectivity at 
a scale that is fine-grained, relative to overall brain dimen-
sions; however, it is extremely coarse in relation to the brain’s 
cellular components. At a cellular level, cerebral neocortex 
contains an average of approximately 90,000 neurons per 
mm2 surface area, while white matter contains approximately 
300,000 axons/mm3. The density of synapses, however, is far 
greater (3108/mm3). Hence, even with the most optimistic sce-
narios for improved spatial resolution, a vast gulf will remain 
between the macro-connectome domain of in vivo neuroimag-
ing and the microconnectome domain dealing with the 3D 
arrangement of neurons, axons, dendrites, synapses, and glia.

2. Brain parcellation

The human brain contains hundreds of distinct parcels that 
differ in their architecture, connectivity, and/or function, yet 
our understanding of their layout is incomplete. The analysis 
of dense connectomes will be a major thrust of human con-
nectome studies. However, many analyses will capitalize on 
more compact representations provided by ‘parcellated con-
nectomes,’ which describe average connectivity between dif-
ferent brain subregions (parcels). It is obviously important to 
have parcellation schemes that are as accurate as possible, so 
that connectivity patterns can be related to functionally mean-
ingful parcels. The challenges in meeting this objective differ 
for each brain region.

3. Long-distance anatomical connectivity

Principles of long-distance connectivity determined in non-
human primates have major and somewhat unexpected impli-
cations for understanding the human connectome. There is very 
little solid evidence on the detailed pattern of long-distance 
connections between gray-matter regions. For the cerebral 
cortex, quantitative analyses of cortico-cortical connections 
from retrograde tracer injections in the macaque are especial-
ly informative. It is of paramount importance to have in vivo 
imaging methods that can chart complex connectivity patterns 
quantitatively and with high spatial fidelity. This will require 
improvements in sensitivity, spatial resolution, acquisition 
time, and analysis methods.

4. Axonal trajectories

Information about the trajectories of fiber bundles and indi-
vidual axons within white matter is critical for the analysis 
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and interpretation of SC using diffusion imaging, yet, surpris-
ingly, little is known about these trajectories from animal 
studies.

5.  Functional connectivity and neurovascular 
coupling

The complex nature of neurovascular coupling, including 
the spatial relationship between BOLD fMRI signals and 
underlying patterns of neuronal activity, has a major impact 
on the interpretation of FC studies.

6. Individual variability

Although the high degree of individual variability, especially 
of the convoluted cerebral cortex, poses major challenges for 
connectome analyses, it also offers a great opportunity for 
exploring the neural basis of individual differences over a wide 
range of behavioral phenotypes. The nature and magnitude of 
individual variability are markedly different for each major 
brain structure. Variability is greatest for the cerebral cortex, 
where it involves large differences in the pattern of cortical 
convolutions, in the location of cortical areas relative to these 
convolutions, in the size of each area, and presumably also in 
the patterns of long-distance connectivity.

The fidelity with which data are acquired and analyzed is 
one of the many differences between human brain macrocon-
nectomics and genome sequencing. Genome sequencing is 
extremely accurate (99.99% or better), making it feasible to 
distinguish differences between individuals at the single nu -
cleotide level. However, this is coupled with a very low level 
of nucleotide diversity across individuals (approximately 1 
part in 1000). Although the accuracy with which human brain 
connectivity can be quantitatively assessed is vastly inferior 
to genome sequencing, the degree of individual variability in 
connectivity patterns is likely to be far greater. Each cortical 
area varies in surface area by two-fold or more across individ-
uals and the strength of pathways between a pair of cortical 
areas can vary by one or two orders of magnitude [25].

The expected sensitivity and reliability in comparing con-
nectomes across individuals and relating connectivity to behav-
ioral phenotypes and genetic differences, however, is difficult 
to estimate. Nonetheless, despite these caveats, I am optimis-
tic that major insights will emerge from mining of The Human 
Connectome Project (HCP) data, which will include the fol-
lowing: (i) a far more accurate charting of brain parcellations 

(particularly neocortical and cerebellar parcels), brain net-
works, and their dynamics; (ii) a quantitative characterization 
of network variability across individuals; and (iii) correlations 
between behavioral phenotypes and brain networks that pro-
vide a deeper understanding of the neural basis of individual 
variability. Such insights could be related to working memory, 
perceptual categorization, emotion, personality, or many other 
phenotypes that are available for data mining.

A Data Acquisition Perspective

Recent advances in neuroimaging have made it feasible to 
examine human brain connectivity systematically and across 
the whole brain in a large number of individuals. In a previous 
publication, Van Essen et al. [24] focused on data acquisition 
and analysis for further connectivity analysis.

A deeper understanding of human brain connectivity and its 
variability will provide valuable insights into what makes us 
uniquely human and accounts for the great diversity of behav-
ioral capacities and repertoires in healthy adults. It will pro-
vide a critical baseline of knowledge for future studies of brain 
connectivity during development and aging and in a myriad 
neurodevelopmental, neuropsychiatric, and neurological dis-
orders. Further, the data acquisition strategies and analysis 
methods developed under the auspices of the HCP will be 
freely shared and will benefit many other projects. Increasing 
both the commonality and sensitivity of methods used to char-
acterize human brain connectivity across different studies will 
enhance our ability to detect subtle links between genetics, 
human brain connectivity patterns, and behavioral variation.

A key objective is to understand inter-individual variability 
of brain circuits, including its genetic bases and its relation to 
behavior, rather than merely aiming to determine the average, 
or typical connectivity in healthy adults.

Connectivity and Dynamics of  
Neural Information Processing

Jirsa [26] systematically reviewed the current literature on 
neural connectivity and dynamics, or equivalently, structure 
and function, with a focus on how changes in connectivity 
affect the spatiotemporal network dynamics qualitatively. To 
date, the three major criteria of comparison in previous stud-
ies have been the local dynamics at the network nodes, the 
presence of time delays, and properties of the connectivity 
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matrix. In the current review, I sketched existing knowledge, 
or more importantly, the limits thereof, for each type of net-
work model.

Temporal dynamics and spatial distribution of neural activity 
is a function of the underlying cortical network connectivity. 
The connectivity has a major impact on the direction of infor-
mation processing. Further, changes in brain connectivity can 
be used as a mechanism for learning. The effective geometry 
in which the dynamics of a system evolves is determined by 
its connectivity matrix, together with the boundary conditions 
of the system.

A rapidly evolving topic of research is the study of complex 
networks that focus on the statistical mechanics of network 
topology and the generation of such network topologies. Net-
work topologies are characterized from the perspective of sta-
tistical mechanics by the number of nodes N and the number k 
of connections (or edges) to other nodes.

Current research in the field of synchronization of dynamic 
network systems primarily focuses on the two extremes of a 
range as follows: from networks of identical nodes with com-
plex intrinsic dynamics and arbitrary connectivity, to networks 
of non-identical nodes with complex intrinsic dynamics with 
constrained connectivity. The interplay between connectivity 
and dynamics, or equivalently between structure and function, 
has been studied further to extend further knowledge.

This classification is important because neural information 
processing is not localized in one small area of the brain. Fur-
ther, one class of network model cannot be used to describe it. 
Moreover, there is an anatomical hierarchy of connection 
topologies that require different network models on different 
levels of organization. For this reason, the study of neural 
information processing naturally led to the study of networks 
of networks, rather than to the study of a single network.

Functional Connectivity Based on  
Covariance Structure

Functional neuroimaging has experienced an explosive 
growth in recent years. Currently there several different imag-
ing modalities that allow researchers to study physiological 
changes that accompany brain activation. Each of these tech-
niques has advantages and disadvantages and each provides a 
unique perspective on brain function.

Since the mid-1990s, neuroscientists, statisticians, and com-
puter scientists have increasingly used fMRI for FC studies, 
since it opened a novel method to explore the functional net-

work of human brain with relatively high resolution. fMRI is 
a noninvasive technique for studying brain activity. During an 
fMRI experiment, a series of brain images are acquired while 
the participant performs a set of tasks. Changes in the mea-
sured signal between individual images are used to make in -
ferences regarding task-related activations in the brain. fMRI 
has provided researchers with unprecedented access to the 
brain in action and, in the past decade, has provided countless 
new insights into the inner workings of the human brain. There 
are several common objectives in the analysis of fMRI data. 
These include localizing regions of the brain activated by a 
task, determining distributed networks that correspond to 
brain function and making predictions about psychological or 
disease states. Each of these objectives can be approached 
through the application of suitable statistical methods, and 
statisticians play an important role in the interdisciplinary 
teams that have been assembled to tackle these problems. This 
role can range from determining the appropriate statistical 
method to apply to a dataset, to the development of unique 
statistical methods geared specifically toward the analysis of 
fMRI data. Given the advent of more sophisticated experimen-
tal designs and imaging techniques, the role of statisticians 
promises to increase in the future.

Friston et al. [27,28] developed a time-series model for fMRI 
data. Goutte [29] proposed clustering methods to detect simi-
larities in the activation between voxels in fMRI time-series 
datasets. Worsley et al. [30] proposed a method for the statisti-
cal analysis of fMRI data that seeks a compromise between 
efficiency, generality, validity, simplicity, and execution speed. 
Their method used simple bias reduction and regularization 
for voxel-wise autoregressive model parameters, with the 
combination of effects and their estimated standard deviations, 
across different runs/sessions/participants via a hierarchical 
random effects analysis using EM algorithm. Sophisticated 
time-series modeling was anticipated and further developed 
afterwards.

In this section, I will survey the covariance estimation re -
search for FC. Examination of functional interactions through 
effective connectivity requires the determination of three dis-
tinct levels of information as follows [27,28]: (i) the regions 
involved in the process and forming the spatial support of the 
network, (ii) the presence or absence of interactions between 
each pair of regions, and (iii) the directionality of the existing 
interactions. The two main methods that were developed, i.e., 
structural equation modeling (SEM) and dynamical causal 
modeling (DCM), require precise prior information to be used.
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Marrelec et al. [31] introduced partial correlation analysis to 
measure the statistical dependencies between two regions after 
removing the confounding effects of all other regions, and 
suggested a Bayesian analysis, which allows the estimation 
and testing of partial statistical dependencies between regions 
without prior model of the underlying functional interactions. 
Although partial correlation circumvents the challenge of prior 
selection of a structural model with SEM and DCM partial 
correlation still needs to be bridged to provide data-driven in -
vestigation of structural models i.e., interaction directionality.

Recent study of dynamic connectivity uses the covariance 
matrix and its function instead of correlations. Estimating the 
eigenvalues of a population covariance matrix from a sample 
covariance matrix is a problem of fundamental importance in 
multivariate statistics. The eigenvalues of covariance matrices 
play a key role in many widely used techniques, particularly 
principal component analysis (PCA). Friston et al. [32] utilized 
PCA for positron emission tomography data analysis. Inde-
pendent component analysis was also popular for fMRI data 
analysis, mainly due to its potential to account for unknown, 
yet structured, spatiotemporal processes in neuroimaging data 

[33-35]. Further, probability independent component analysis 
could also efficiently and accurately extract signals of interest 
in the spatial, temporal, and subject/session domain [10]. In 
many modern data analysis problems, statisticians are faced 
with large datasets, where the sample size, n, is of the same 
order of magnitude as the number of variables, p. Random 
matrix theory predicts that in this context, the eigenvalues of 
the sample covariance matrix are not good estimators of the 
eigenvalues of the population covariance. The Marcenko-Pas-
tur equation can be used to better estimate the eigenvalues of 
large dimensional covariance matrices [36]. For large dimen-
sional case, Friedman et al. [37] solved the problem of esti-
mating sparse graphs by a lasso penalty applied to the inverse 
covariance matrix using a coordinate descent procedure for 
the lasso. This covariance estimation can be used to describe 
the FC of the brain. Dynamic connectivity research, based on 
the covariance structure, is still an active ongoing project.

Intrinsic Brain Connectivity Using Functional 
Magnetic Resonance Imaging and  

Diffusion Tensor Imaging

Diffusion tensor imaging (DTI) is an extremely sensitive 
imaging method for detecting and characterizing differences 

in brain tissue microstructure and organization as a function 
of pathology, development and aging, and white matter plas-
ticity. It may also be used to estimate trajectories of white 
matter pathways in the brain.

A recent trend in brain research can best be represented by 
the term ‘brain connectome,’ which describes the brain as a 
large complex network connected by local and inter-regional 
neurons. In vivo connectome research is mainly explored in 
terms of anatomical and functional connectivity defined by 
DTI and R-fMRI, respectively.

Statistical techniques combining fMRI and DTI data, such 
as anatomically weighted FC (awFC), which was developed 
by Bowman et al. [38], help describe the functional organiza-
tion within the human brain. The awFC approach implements 
a hierarchical clustering algorithm that establishes neural pro-
cessing networks using a new distance measure consisting of 
two components, i.e., a primary functional component that 
captures correlations between fMRI signals from different 
regions and a secondary anatomical weight reflecting SC pro-
babilities. As DTI approaches continue to advance, they can 
be incorporated into the statistical analysis including fMRI 
and may yield higher accuracy.

Several studies show that DTI can produce MRI indices in 
specific white matter tracts that may be associated with clini-
cal disability in multiple sclerosis, a disease that causes severe 
motor and cognitive deficits [39-43]. These studies provide 
important insights into the organization of the brain and the 
effect of brain disorders. The results of these studies may be 
used as a tool for the diagnosis and management of patient 
care, or as surrogate markers in future clinical trials, particu-
larly if they are shown to be pharmacologically sensitive. 
Huang et al. [44] proposed a hierarchical Bayesian “scalar-on-
image” regression procedure, which introduces a latent binary 
map estimating the locations of predictive voxels and penalizes 
the magnitude of effect sizes in these abnormal voxels, as an 
example of predicting clinical disability from DTI images.

Nonetheless, there are still important and unanswered ques-
tions and a need for tools that warrant further research in this 
exciting area of neuroimaging.

Concluding Remarks

Just like cartography of the earth’s surface was the domain 
of intrepid explorers earlier this millennium, charting the 
structure, function, connectivity, and development of the 
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human brain (i.e., broadly, brain cartography) is one of the 
great challenges of the 21st century. There are interesting 
high-level similarities in the types of technological evolution 
for both types of cartography.

In a roughly analogous fashion, four major revolutions in 
cartography of the human brain can be discerned over the past 
century. The first period involved classical maps of brain arc-
hitecture and functional organization, which were provided by 
Brodmann and other anatomists. The second period involved 
the production of brain atlases. The third period involved maps 
of brain structure and function, which were acquired using 
MR-based methods and visualization of brain volumes and 
surfaces. In the 21st century, neuroscience is entering a new 
realm in which human brain connectivity can be analyzed 
using the powerful tools discussed above and visualized using 
increasingly sophisticated navigational and informatics tools. 
The continued development of statistical methods that over-
come the described challenges [45] are expected to enable dis-
covery of connectivity functions and pathways that explain 
the brain structure with large parceled information.
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