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1. Introduction and Preliminaries

We consider the stationary stochastic models  
adapted to the increasing sequence of sigma fields . 
Introduce the conditional mean  and the prediction error  
defined by

 and .	 (1)

To accommodate conditionally heteroscedastic models, let 
 denote the conditional variance and the standardized ver-

sion  of  is referred to as the “innovation” 
process associated with the stochastic model . Specifically,

 where 	 (2)

where  denotes the trivial sigma field. First note that  and 

 are  measurable and thus the innovation  con-
stitutes a zero mean and unit variance sequence of (uncorrelat-
ed) martingale differences. It is customary to model  
as iid (independent and identically distributed) with mean zero 
and variance one. Now, so called the parameter (vector) of 
interest comes into the stochastic model. Let θ denote  
vector parameter taking values in Θ which is an open subset 
of the -dimensional Euclidean space.

Typically, θ indexes  and  in such a way that 
 and  and therefore θ is called 

a parameter (vector) of interest. It will be assumed that the 
functional form of  and  is specified. For instance, 
the formulation

 and 

is named as AR(1)-GARCH(1,1) model where the parameter 
of interest is given by θ=  with . To be 
more specific, the AR(1)-GARCH(1,1) leads to
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.	 (3)

Various stochastic models in the literature can be employed 
by making appropriate choices of  and . See for 
instance Hwang et al. [1].

We move to discussions on the likelihood of the data 
. When the likelihood is correctly specified, the maxi-

mum likelihood (ML) method is readily available to estimate 
parameters. Recall that first order derivative of the true log-
likelihood is referred to as Fisher’s score and variance of the 
Fisher’s score is named as Fisher information. For the data 
exhibiting a dependency structure, however, exact likelihood 
is rarely available to researchers mainly due to unobserved 
initial values and unknown innovation distributions. From now 
on, we are interested in so called non-likelihood case in the 
sense that exact likelihood is not specified although it does 
exist. The initial value problem happens commonly in sto-
chastic models. The likelihood of a stochastic model is usually 
conditionally on initial values. For the ARMA(1,1) given by

initial value is  and therefore likelihood of the data 
 is obtained conditionally on the unobservable random 

quantity . In other words, the likelihood for ARMA(1,1) 
is not an exact one but a conditional one. The non-likelihood 
case arises because the innovation distribution (and likelihood) 
may not be known and stochastic models are defined only 
through a first few conditional moments without requiring 
specification of the likelihood. Further, the true innovation 
distribution (and likelihood) may be too complicated to use 
for practical purposes. To deal with non-likelihood cases, it is 
usual to assume a tractable score for the data for the sake of 
easy analysis. The adopted tractable score is referred to as the 
instrumental score in order to discriminate from the true Fish-
er’s score. The term “instrumental” is used to indicate that it 
acts as an alternative to the true (but unknown) Fisher’s score. 
Based on the authors’ recent publications, in this paper, various 
existing inferential methodologies in stochastic models (e.g., 
conditional least squares, pseudo likelihood, quasi-likelihood, 
quasi-maximum likelihood, Godambe’s linear scores) are 
reviewed under a unified framework of the instrumental scores. 
Applications to bifurcating auto-regressions in the context of 
cell lineage studies are discussed. Most of the results in the 
paper are taken and adapted from the authors’ recent publica-
tions listed in the reference.

2. Instrumental Scores for Non-likelihood 
Stochastic Models

We begin with the Fisher’s score . Let  denote 
the (true) conditional density of  given . The maximum 
likelihood (ML) method is based on the Fisher’s score  
defined by

 vector	 (4)

where  is unconditional density of . The Fisher infor-
mation matrix  is defined by the covariance matrix of 

, that is,

	 (5)

where “T ” denotes “transpose”. Under some regularity condi-
tions (cf. Hwang and Basawa [2]),  is asymptotically 
normal with mean zero vector and covariance matrix . 
Extending  toward non-likelihood cases, consider the 
following  instrumental score  defined by

 vector	 (6)

where  is a sequence of martingale differences i.e., 
= 0. Here,  denote the -field generated by 
. We collect all the instrumental scores into 

. It is obvious that  is a member of . Some 

(important) special members of  follow.

Conditional Least Squares (CLS): With the conditional mean 
, consider the instrumental score  

with

	 (7)

which is referred to as a CLS-score.

Generalized Least Squares (GLS): Let  denote a dis-
crepancy between  and  such as . 
Generalized least squares (GLS) based on  is obtainedby 
minimizing

.

It is shown that the GLS score is given by (refer to Hwang 

[3])
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	(8)

Maximum Likelihood (ML): Maximum Likelihood score 
refers to the choice

where  is the conditional density of  given .

Quasi-Likelihood (QL): Without requiring the knowledge of 
the likelihood, QL method assumes only first two conditional 
moments:  and = . A 
quasi-likelihood (QL) score based on the martingale differ-
ence  is given by  where

	 (9)

The QL score based on the martingale difference vector

	 (10)

is given by

	 (11)

where : the (2×2) conditional covariance matrix of , 
viz.,

	 (12)

with  and 
. See Godambe [4], Hwang and Basawa [3] and 

Hwang et al. [5].

Pseudo Likelihood (PL): A tractable likelihood is called a 
pseudo-likelihood (PL) which may be a falsely specified like-
lihood. The PL estimator is the zero of the pseudo-likelihood 
score which is given by . Here  is a 
pseudo-conditional density (of  given ) which may dif-
fer from the true (but unknown) conditional density  
appearing in the ML. Some pseudo-conditional densities are 
useful in describing fatter tails than normal density (see, for 
instance, Tsay [6, Ch.3]). The standardized -distribution with 

 degrees of freedom ( >2) is given by

.

The generalized error distribution (GED) with parameter  
>0 is of the form

with .

Quasi Maximum Likelihood (QML): Quasi-maximum like-
lihood (QML) score is obtained by assuming that the likeli-
hood is Gaussian for simplicity. QML estimator is the zero of 
the QML score. QML-estimator is consistent and asymptoti-
cally normal under some regularity conditions (cf., Hwang et 
al. [1]).

Godambe’s Optimum Score (GOS): Godambe [4] considered 
the following “linear” scores  defined by

	 (13)

where  is a fixed martingale difference vector of dimen-
sion  and  is ( ) weight matrix whose compo-
nents are  measurable. The Godambe’s class of “linear” 
instrumental scores is generated by varying the “coefficients” 

 while  being fixed in (13). We shall refer to the 
resulting Godambe’s class as  which is clearly a 
subset of . The Godambe’s optimum score (GOS) 
which will be denoted by  within Godambe’s class  is 
formulated by (see Hwang [3])

	 (14)

where  measurable  matrix  is given by

.	 (15)

where and in what follows  and  denote condition-
al expectation and conditional variance given . The GOS 
in (14) can be viewed as a generalization of the QL score 
defined in (11). Specifically, if one chooses  in (10) for 

 in (13), then the GOS  given in (14) reduces to 
the QL score in (11). Consequently, GOS extends the scope of 
the QL methodology. Refer to, for instance, Hwang and Basa-
wa [7] and Hwang [3].

3. Efficiency Issue of Instrumental Scores  
and Quasi-information

Recall the class  of all the instrumental scores 
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in which the Fisher’s score  is a special member. The 
Fisher information matrix  is defined as the covariance 
matrix of . See (4) and (5). The MLE of  is obtained 
by solving = 0. Via ergodic theorem, the limit matrix of 

 exists and is denoted by

.	 (16)

Under some regularity conditions (see Theorem 3.2 of Hwang 
and Basawa [2] for details), it can be verified that

(i) 	 (17)

and
(ii) Consider any instrumental score in  and let 
 be obtained from solving = 0. Then, there exits a 

constant matrix  such that

	 (18)

where  is a non-negative definite matrix, and  den
otes “convergence in distribution”.

Consequently, one can conclude

Proposition 1: The ML estimator  is asymptotically effi-
cient in the sense of having the “smallest” covariance matrix 
among all the estimators  within .

Although it is the best among ,  can not be 
implemented because of the non-likelihood case. To argue the 
second best score, we need to restrict  to the God-
ambe’s class  of “linear” instrumental scores. See 
(13). It is obvious that . The Godambe’s optimum score 

(GOS)  is given by (14) and (15). Analogously to the 
Fisher information, we define the quasi-information as the 
covariance matrix of , that is

.	 (19)

Define the limiting average quasi-information as

.	 (20)

Let  be the solution of = 0. Under some regularity 
conditions (see Theorem 3.3 of Hwang and Basawa [2] and 
Lemma 1 of Hwang [3] for details), we are able to state

(i) 	 (21)

and
(ii) Consider any instrumental score in  and let 

 be obtained from solving = 0. Then, for some con-
stant matrix B(θ),

	 (22)

where  is a non-negative definite matrix.

Consequently, analogous to Proposition 1, within the restrict
ed class ,

Proposition 2: The GOS estimator  is asymptotically effi-
cient in the sense of having the “smallest” covariance matrix 
among all the estimators  within .

Combining Propositions 1 and 2, GOS score  acts as 
the ML score  within the restricted class  (see for 
instance Hwang and Kim [8]). The information of  is 
referred to as “quasi-information” (i.e., feasible second best 
information) which is asymptotically smaller than the Fisher 
information.

4. Nuisance Parameter Issue on  
Instrumental Scores

As noted in Hwang and Kim [8] and Hwang [3], although 
GOS  defined in (14) and (15) enjoys a certain asymp-
totic efficiency as presented in Proposition 2, it has a draw-
back in terms of a practical calculation. The weight in (15)

	 (23)

may depend on (unknown) nuisance parameters  arising from 
the true (but unknown) distribution and therefore = 0 
may produce an estimate  involving unknown nuisance 
parameter . However, this problem can be resolved (often in 
time series) via replacing the nuisance parameter  by QML 
estimate  (See Section 2, QML). For instance, revisit the QL 
score in (11) and (12). From the relationship (2) between the 
innovation process  and observation process , we 
have . Thus, the QL score  involves the 
nuisance parameter . Refer to Hwang [3] for 
various examples of GOS  involving nuisance parame-
ter . One can replace  by QML residuals without affecting 
asymptotic efficiency of .

Proposition 3: Under some regularity conditions in Theorem 
2 of Hwang [3], one can solve = 0 to get  via feasi
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ble steps as follows. (i) Step 1: Identify nuisance  parameter 
appearing in the GOS . (ii) Step 2: Fit the stochastic 
model via QML obtained from Gaussian likelihood and calcu-
late QML residual . (iii) Step 3: Estimate  by  based 
on the QML residual . (iv) Step 4: Replace  by  in 
the GOS  and solve = 0 to get .

5. Non-stationarity Issue on  
Instrumental Scores

Asymptotic efficiency issues stated in Propositions 1 and 2 
are based on the assumption that the stochastic model is sta-
tionary. Extensions to non-stationary models are made in the 
literature. Refer to, e.g., Hwang et al. [5], Hwang [9] and 
Hwang and Kim [8] where various non-stationary processes 
including non-stationary ARCH, explosive AR(1), non-sta-
tionary random coefficient model and Branching Markov pro-
cess are discussed in the context of instrumental scores. The 
main idea to deal with a non-stationary model is to use ran-
dom norm in stead of constant norm ( ) to get limit distribu-
tions.

Consider the class  and the GOS 
 for which the sum of conditional covariance matri-

ces  is defined by

.	 (24)

Let non-random and non-singular  matrix  be 
such that

.	 (25)

Let  be the solution of = 0 for the non-stationary 
process. Under some regularity conditions as in Theorem 1 of 
Hwang and Kim [8],

	 (26)

where  is defined in (25). Consequently,  is asymptoti-
cally normal with mean zero and covariance matrix 

. Due to Hwang and 
Kim [8], one can continue to obtain

Proposition 4: Consider the non-stationary stochastic model. 
The GOS estimator  is efficient in the sense of having the 
asymptotically “smallest” covariance matrix within .

6. Applications to Bifurcating Auto-regressions

Cowan and Staudte [10] suggested bifurcating autoregres-
sion (BAR) to analyze data from cell lineage studies. The sto-
chastic model BAR suits the bifurcating data such as blood 
pressure, cholesterol level and protein content of a cell. Let  
represent observation on individual . In a bifurcating model, 

(mother)  produces two sisters . Denote (1) denote 
mother of the individual . For instance with = 5, 5(1) = 2. 
Refer to Hwang and Kim [11] and Hwang [12] and references 
therein for various bifurcating data structures. Consider the 
following heteroscedastic BAR given by

	 (27)

where the innovation  is iid with mean zero and variance 
unity, and its distribution is unspecified. Here, 

 and . Based on the discrep-
ancy vector  in GOS and hence in QLin (10)

	 (28)

the GOS  is formulated by (see (11) and (12))

	 (29)

with

.	 (30)

The corresponding quasi-information  is given by

                   	 (31)

which attains the maximum information matrix within the 
class of linear scores  (see Proposition 2). As an alternative 
instrumental score, one may adopt weighted least squares 

(WLS) minimizing . If WLS score belongs 

to , then  is better than WLS score and therefore  
has the smaller asymptotic variance than that of .
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