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1. Introduction

In statistical inferences we have implicit assumption that all 
observations have an equal role in the estimation of model 
parameters and the subsequent conclusions. An observation is 
influential if it has a much greater impact on the estimation of 
parameters and predicted values, compared to the most of the 
other observations. Detection of influential observation is an 
important part of the regression diagnostics.

The basic statistics here are the residual and the leverage 
concerning the influence in linear regression models [1]. The 
definitions of leverage in nonlinear regression models are 
considered by Emerson et al. [2]. The main idea is to use the 
linear approximation of a nonlinear regression model. Bates et 
al. [3] propose measures of parameter-effects and intrinsic 
curvature for assessing the validity of the linear approxima-
tion. These ideas are refined by Bates et al. [4], and Hamilton 
et al. [5].

In this paper we consider how the influence measures affect 
leverage, and we discuss the relationship between influence 
and leverage measures. A brief review of leverage in nonlin-
ear regression models given in Section 2. We propose a modi-

fication of the influence measure in Section 3. In Section 4, 
we provide example.

2. Leverages in Nonlinear Regression

Consider the standard nonlinear regression model

x , 

where x  represents a q-dimensional vector of known explana-
tory variables associated with the -th response ,  is  
vector of unknown parameter, and  is error. The response 
function  is assumed to be known and continuous, one-to-
one, and twice continuously differentiable in , and  is inde-
pendent random error with zero mean and variance . In 
matrix notation the model can be written

where  is an  response vector with elements , 
 is an  matrix of known explanatory variables with 

rows x x ,  is an  vector with elements , and 
x x . Let  

be the least squares estimate of parameter vector,  
 be the predicted response vector.

A tangent plane to the expectation surface at the point  is 

Influence and Leverage Measures in Nonlinear Regression

Myung-Wook Kahng1,*
1Department of Statistics, Sookmyung Women’s University, Seoul 04310, Korea

(Received October 25, 2017; Revised November 15, 2017; Accepted November 18, 2017)

ABSTRACT

Assessment of the influence is an important part of regression diagnostics. The measure of influence in linear regression 
has been extended to nonlinear regression. The connections between measures of influence and leverage are explored. We 
suggest a modification of the influence measure for assessing the influential observations on the parameter estimates in a 
nonlinear regression model.

Key words : Distance measure, Influential observation, Intrinsic curvature measure, Jacobian leverage

* Correspondence should be addressed to Dr. Myung Wook Kahng, Department 
of Statistics, Sookmyung Women’s University, Seoul 04310, Korea. Tel: +82-
2-710-9435, Fax: +82-2-710-9283, E-mail: mwkahng@sookmyung.ac.kr

 

Available Online at https://qbs.kmu.ac.kr:442/



124	 Quantitative Bio-Science  Vol. 36, No. 2, 2017

used to make inferences about  based on the approximated 
linear model . Here,  
is the  matrix and . Under this approximation, 

 lies in this tangent plane. The tangent plane leverage 
matrix can be given by . The diagonal ele-
ments  of  are measures of leverage for -th observation 
in nonlinear regression model [6].

Emerson et al. [2] discussed the measure of leverages by 
perturbation schemes. Given the perturbed response vector 

 and the perturbed least square estimate, denoted by 
, the perturbed predicted response vector is , 

where  is an  vector with -th element equal to one, and 
all other elements equal to zero.

Another measure of leverage in nonlinear regression mod-
els is referred to by St. Laurent et al. [7] as the Jacobian lever-
age. The leverages in nonlinear regression model can be 
obtained as follows [8]:

where

,

is the Jacobian leverage matrix. Here  
is the  Hessian matrix and .

3. Influential observations

Assessment of the influence of the observations on the 
parameter estimate is an important part of influence analysis. 
Numerous literatures are available for the identification of 
influential observations in linear regression. The Cook’s dis-
tance have become very popular among a number of available 
influence measures.

Consider the linear regression model

where  is an  response vector,  is an  matrix of 
known constants,  is a  vector of unknown parameters, 
and  is a vector of independent random variables each with 
zero mean and variance . Let  be the least squares estimate 
of parameter vector,  be the predicted response vector, 
and  be the residual vector. Recall that the covariance 
matrices of the residuals  and predicted values 

 are given by  and , respectively, where 

. The diagonal elements  of the projection 
matrix  are called leverages and generally indicate the 
amount of leverage of the response value  on the corre-
sponding predicted value .

Cook [9,10] proposed that the influence of the -th observa-
tion be judged by using the distance measure,

where  is the estimate of  without the -th data point, and 
. A large value of  indicates that the associ-

ated -th observation has a strong influence on the estimate of 
. The magnitude of the distance between  and  may be 

assessed by comparing  to the probability points of the cen-
tral F-distribution with  and  degrees of freedom. This 
is equivalent to finding the level of the confidence ellipsoid 
centered at  that passes through  and entails nothing more 
than a monotonic transformation of  to a familiar scale. The 
usual computational form of  that depends only on the full 
data set;

where  is the -th studentized residual. Clearly,  can be 
larges if either  or  is large. These two components mea-
sure the importance of two characteristics of each data points. 
The -th studentized residual , reflecting lack of fit of the 
model at the -th case, and potential , reflecting the location 
of x . The ratio which is as the Hadi’s potential [11] can also 
be expressed as follows [12]:

x x

where  is  without observation . It indicates that the 
leverage of an observation is directly related to its correspond
ing model sensitivity.

Cook et al. [12] suggested that some statistics developed for 
linear regression models can be applied to nonlinear regression 
models if the models are approximately linear in the vicinity 
of the optimum parameter set. The parameters of nonlinear 
models can be transformed to yield an approximately linear 
model if the intrinsic nonlinearity is sufficiently small [3,4]. 
The matrix , residuals , and estimated error variance  
remain invariant under such a transformation [13], suggesting 
that Cook’s distance is a valid measure of influence for mod-
els of this type because the measure is based on , , and . 
The variance-covariance matrix , however, is not 
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invariant under a transformation of parameters unless the total 
nonlinearity is small [13]. Therefore if the measure of total 
nonlinearity indicates that a model is effectively linear, Cook’s 
distance can be accurately computed. Cook’s distance is also 
applicable to models with a high degree of total nonlinearity 
if the intrinsic nonlinearity is sufficiently low.

A version of Cook’s distance for assessing the influence of 
the observations on the vector of estimated parameters in the 
nonlinear regression model is proposed by Cook et al. [12]. 
The explicit expression of this measure is given by

where  is the estimate of  when the -th observation is 
excluded from the calculations. The usual computational form 
of  is

where  is the -th studentized residual in nonlinear regression

and  is the -th diagonal element of , which is referred to 
as the tangent plane leverage matrix. Another measure of 
leverage in nonlinear regression models is referred to by St. 
Laurent et al. [7] as the Jacobian leverage. The Jacobian lever-
age matrix is given by

.

The discussion about two leverages have led us to suggest a 
modification of the influence measure 

which is referred to as the -th Jacobian Cook’s distance. Here, 
 is the -th Jacobian studentized residual

and  is the -th diagonal element of .
St. Laurent et al. [7] suggested using  whenever possible 

since it is easier to conduct computations and interpretation of 
the results is similar to linear regression. For example, the 
diagonal elements of  have the following properties:  

 and , where  is the number columns of . 

These properties do generally not hold for the diagonal ele-

ments of the Jacobian leverage matrix.

4. Example

We consider data on the metabolism of tetracycline from 
Bates et al. [14], given in Table 1. A proposed model for these 
data is

x x x .

The parameter estimates are  
and . We obtain the maximum intrinsic curvature 

. This curvature measure exceed corresponding 
guide , indicating inadequacy of the 
linear approximation inference. Given in Table 1, we have 
two versions of leverage, ,  and two versions studentized 
residuals, , . In addition, the Cook’s distance  and Jaco-
bian Cook’s distance  are calculated for each case. There is 
a noticeable disagreement between the two measures in some 
cases.
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Table 1. Tetracycline data and influence measures

1
2
3
4
6
8

10
12
16

0.7
1.2
1.4
1.4
1.1
0.8
0.6
0.5
0.3

0.978
0.617
0.383
0.359
0.421
0.271
0.258
0.334
0.379

0.960
0.548
0.375
0.353
0.375
0.258
0.264
0.334
0.360

1.798
-1.502

0.366
1.383
-0.150
-1.179
-0.866

0.772
1.119

35.747
0.909
0.021
0.267
0.004
0.129
0.065
0.075
0.191

1.340
-1.383

0.363
1.376
-0.145
-1.168
-0.869

0.772
1.102

10.84
  0.580
  0.020
  0.258
  0.003
  0.118
  0.068
  0.075
  0.170
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