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Introduction

Interest in bioceramic foams is increasing because of their 
wide applicability in many fields such as microbial fermenta-
tion, food processing, and medical applications [1,2]. The cel-
lular structure consists of an interconnected network of solid 
walls called struts. Its cellular characteristics significantly 
influence its applications [3]. There are many methods to ana-
lyze the characteristics of these foams; however, image analy-
sis is accepted as the one of the most convenient techniques 
for description of cellular structures [4]. For example, a recent 
study by Tong et al. described the dry foam generated in a 
bubbling (i.e., flotation) process using image analysis methods 

[5]. Ou et al. resolved the cellular SiC foams with X-ray 
tomography using image analysis [6]. Both these studies 
developed adequate image processing or reconstruction meth-
ods for enhancing the significant features prior to quantifying 
characterization. In spite of these efforts, De Pascalis et al. 
indicated that no effective reconstruction algorithm for foam 
structures could yet detect the shapes of cellular foam struc-
tures without an expensive high-resolution 3D imaging tech-
nology, incurring high cost and requiring operational exper-
tise [7]. 

Therefore, in this study, using conventional microscopy, an 
image processing algorithm was designed to analyze cellular 
structures from a gray image of bioceramic foam surfaces. 
This includes an original automatic boundary construction 
method, which is the most challenging part in this study. The 
bioceramic foam, casted using a powder processing tech-
nique, possesses a high cell volume fraction (porosity over 
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70%), a large degree of interconnection to neighboring cells, 
and variable cell sizes (10~1000 μm); a typical image is shown 
in Fig. 1. An open-cellular surface consists of three parts: 
cells, struts, and cell windows, which are the small intercon-
nections between cells. Some of the cell windows were detect-
ed as dark holes in the image because of low light reflection. 
Therefore, the light intensity from these was lower than from 
the cell or strut part. In general, the light intensity from the 
cell was lower than that from a strut, but higher than that from 
a cell window. Unfortunately, in such images, the boundaries 
are not clearly identifiable; furthermore, the cell windows 
with an irregular spatial distribution also hide their boundar-
ies. The obvious distinction between both these kinds of bound-
aries seemed difficult to segment using simple image process-
ing methods. The surface in the image contains high rough-
ness and an irregular spatial distribution of cells and cell win-
dows. For example, the simplest task in boundary detection or 
construction is the threshold operation based on global bright-
ness or its gradient in each pattern [8-11]. However, it was dif-
ficult to detect the structure in Fig. 1 using simple segmenta-
tion. Therefore, in this study, an image algorithm was devel-
oped that can detect and segment each cell using more sophis-
ticated image operations. 

To segment the features, parts of the boundaries were extract-
ed using a threshold operation after image acquisition and pre-
processing for noise reduction. Next, using the extracted 
boundaries, each cell was marked. Finally, as the most signifi-
cant and strenuous step, other boundaries were delineated. 

This used not only common tools such as threshold and skele-
ton operations, but also the so-called binary reconstruction to 
correct the faults from closely bounded objects and gray scale 
reconstruction to mark the cell [12,13]. The results of these 
segmentation studies were that, using the abovementioned 
method, we can quantify the important characteristic items 
such as cell size and perimeter. To compare the effect of our 
processing, we also performed conventional boundary con-
struction and measurements using the watershed segmentation 
and the line intercept method. 

Methods

1. Material preparation

The bioceramic preparation process was similar to those 
described in previous studies [1,2]. Slurry was prepared, mixed 
with distilled water, silica powder (with a size of about 2 

μm)), and additives, sodium lauryl sulfate as a surfactant, 
sodium hexametaphosphate as a dispersion agent, and epoxy 
as a hardening agent. Bubbles were generated from the interi-
or of the slurry by mechanical agitation over 30 min. As a 
result, many of the bubbles were dispersed with a high stabili-
ty in the slurry and became solidified. Then, the slurry with 
the bubbles was dried at 50℃ to come to the green body state 

(the drying temperature was selected to gently evaporate the 
water inside the slurry). The bulk green body was cut and 
became small pieces of cubic shape, followed by sintering at 
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Fig. 1. (a) The sample image to be segmented (b) Its light (brightness) intensity histogram.
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1200℃. The resultant bioceramic foam had planar surfaces 
and a high cell volume fraction (porosity over 70%), high 
degree of interconnection between cells, variable cell sizes, 
and depths. As previously mentioned, the sample was not pre-
treated before analysis, but solely used image analysis tech-
niques. 

2. Image analysis procedure

In general, an image analysis system consists of an image 
processing software and a video camera connected to an opti-
cal microscope and computer hardware. Our image analysis 
procedure was divided into many sub-processes: image acqui-
sition (or capture), image preprocessing: for noise reduction to 
obtain a clear view of the acquired image, image segmenta-
tion: for locating and detecting the objects of interest, and 
image measurement. Among all these sub-processes, the 
image segmentation process was the most important and diffi-
cult step in ensuring quantitative characterization. To find the 
optimal segmentation algorithm, suitable data analysis must 
be carried out to understand the unique pattern of an object to 
be segmented compared with any other patterns. The image 
processing procedure is discussed in the following lines.

2.1 Image acquisition 

The images of the bioceramic foam sample obtained using 
an optical microscope coupled to a CCD camera (HiRox) 
were digitized and stored in 100 dpi with 256 gray levels and 
640 × 480 pixels. The software used for this study was Image-
Pro Plus 4.0 (Media Cybernatics, MD, USA), which is a com-
mercial software that can perform various image operating 
procedures automatically. Each pixel is given a light intensity 
value between zero to 255 in the gray scale level. The number 
of pixels in the image is presented as a light intensity histo-
gram as a function of the light intensity value. We also acquir-
ed background images to regularize the intensity of the sam-
ple image. 

2.2 Image preprocessing

Through image preprocessing, the image was enhanced to 
be pleasing to the human eye and reduce the unwanted distor-
tion because of optical noise. The preprocessing treatment 
consisted of a background correction and a noise reduction 
step. The background correction enabled the background 
intensity of the overall image to be more regular. Gauss filter-
ing, using a 7 × 7 pixel filter, was performed to reduce the 

unspecified variance of the light intensity profile to increase 
image smoothness. 

 
2.3 Operation for image segmentation 

We used the morphological operations required for the 
image segmentation process involving thresholding, a dis-
tance function, skeletonization, and a binary-scale reconstruc-
tion operation. The first three operations are common has and 
have frequently been used for image processing of various 
kinds of structures [8-11]. The threshold operation is the sim-
plest segmentation method; it divides a gray image into a 
binary image on the basis of a threshold value based on light 
intensity [8-11]. Usually, white is used for describing the 
objects of interest, and black for those in the background. The 
threshold operations are presented mathematically in the 
domain set DI as follows:

Tk(I) = {p ∈ DI
 | I(p)≥k} (1)

In this equation, k is a threshold value, I is a gray scale 
image, and p is a pixel included in the image I. I(p) represents 
a functional form of the light intensity of a pixel p.

The morphological operations begin on the basis of the con-
cept of a structural element. The element is usually regarded 
as characteristic sets comprised of some small number of pix-
els with certain light intensities arranged in a certain pattern. 
Each structural element may have a different pattern, but an 
important common feature is that each element is used so as 
to make all objects of interest in an image transform step by 
step. In general, in a gray image (J), all objects with brighter 
intensity can be dilated to a small extent by adding the struc-
tural element (E) to the boundary of the objects; this operation 
is called dilation (J ⊕ E). 

A distance function was used in the binary image in which 
color was transformed to gray levels. As the distance of a pixel 
in the white object increased from the background objects of 
black color, the brightness of the pixel became higher. In addi-
tion, the skeleton operation (S(I)) was a useful tool for image 
segmentation operations; it reduced the selected objects to 
line segments. The other tool for segmenting an image was 
binary-scale reconstruction. Binary-scale reconstruction was 
used to present only those objects containing selected images 
for those and removed other images [8,12,13]. 

In this study, binary scale reconstruction was used to extract 
the marker (J) from the mask image (I), as follows: 

ρI(J) = lim δI
(n)(J)   when n →∞ or a very large number, (2)
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δJ
(1) (J) is called a geodesic dilation, and

δJ
(1)(J) = (J ⊕ E) ^ I (3)

In this equation, the symbol ^ stands for the point wise min-
imum. This study performed it to remove defects. 

Conventionally, the watershed segmentation method is fre-
quently used to break weakly connected objects such as 
throats between voids [8]. This method assumes the two con-
nected objects as mountains on a map so that a geometrical 
boundary between the objects may discriminate the objects as 
the way that a river divides the two mountains. However, we 
used gray scale reconstruction to identify the local minima or 
maxima in the brightness intensity profile, and to mark cells 
more effectively. Fig. 2 gives a schematic presentation of 
these reconstruction procedures. Details on the binary or gray 
scale reconstruction technique are presented in the earlier 
studies [9,12,13]. 

2.4 Preparing the cell markers 

First, the sample image was converted to a binary image to 
present cell regions in white color. It was difficult to deter-
mine the number of pixels allotted to cell regions; however, in 
this study, regions of white color were considered top solid 
struts, or otherwise, cell regions, based on the porosity of the 
cellular bioceramic sample. For example, if cellular bioceram-
ic foam has a porosity value of 80%, the area percentage of 
white regions would be allotted as 20% and these would be 
considered to be regions of top solid strut. The generated top 
solid struts were regarded as boundaries for sure. Next, the 
image with the extracted boundaries was inverted into a bina-
ry image so that they are in black color. Then, the image was 
transformed using the distance function. The resultant image 
was a gray scale image such that the brightness increases with 
increasing distance from the background objects. These points 
were where the intensity was greater than other neighboring 
points-local maximum points. The local minimum points 
could be detected easily using gray scale reconstruction meth-
od: the method is depicted in Fig. 3. We assumed that all the 
local minimum points were cell markers, called primary cell 
markers in this study. This is because additional cell markers 
should sometimes be generated by threshold operations based 
on threshold values, called initial threshold values in this 
study. For example, if the initial threshold value is taken to be 
100, the darker regions with a threshold value less than 100 
are all included in the cell regions as well as primary cell 
markers. More detail on procedures for generating the prima-

ry markers can be found in the literature [12]. 

2.5 Automatic boundary construction

The other boundaries were generated by repetitive opera-
tions that consisted of thresholding of the sample image, its 
skeletonization, defect removal with the cell marker image, 
and image overlay of the resultant image onto the sample 
image. Brightness values for thresholding were between zero 
and the value used to extract boundaries for marking cells. 
For example, if certain features can be discriminated from the 
sample image by thresholding at a brightness value of k, they 
are colored as white (Tk(I)), and are reduced into line objects 

Fig. 2. The principal image operations used in this study: binary 
scale reconstruction (top) and gray-scale reconstruction (bottom).
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by a skeleton operation (S(Tk(I))). Then the image with the 
skeletonized objects was overlapped onto the sample image. 
Then, the threshold was applied with the overlapped image 
using the value of k + 1, and skeletonization was performed 
again. In a similar manner, at every threshold step, the line 
objects were generated gradually. A portion of the lines con-
tributed to shape the geometrically closed objects and the 
other portion of the lines were merely branches or small 
points. These operations can be described as follows:

Bk(I) = S(S(Tk(I)) + Tk + 1(I)) (4)

Bk(I) stands for the intermediate boundary construction step 
presented above. As these steps continued, for example at a 
Bm(I) step (m>k), if some skeletonized lines are included in a 
threshold at the next step Tm + 1(I), then they are removed and 
regenerated at a Bm + 1(I) step. As (m + 1) is greater than m, 
one can recognize as if the lines are moving to the brighter 
regions with an increase in the number of the steps. On the 
other hand, other lines, which are not included in the Tm + 1(I), 
remain in the image and many closed objects are generated. 

The procedure is illustrated in Fig. 4.
Though many closed objects can be considered as segment-

ed cells, not all are, because the closed shape can be generated 
under many conditions that are not related to cell detection. 
This phenomenon, called over-segmentation [9,12], was cor-
rected using appropriate feature markers such as the cell 
markers (C) that were already produced.

A binary-scale reconstruction was useful in selecting only 
the closed objects including the cell markers. For example, in 
the Bk(I) step, 

Bck(I) = S (ῤBk(I)(C))  (5)

Bck(I) is a revised boundary construction step involving 
removing faults that occurred in the Bk(I) step; ρ’ stands for 
the inversed boundary reconstruction operation because the 
cells are presented in the color black. Similarly, at the Bm + 1(I) 
step,

Bcm + 1(I) = S(ρ’Bcm(I)(C))  (6)

Fig. 3. The sub-process to generate the primary cell marker image. 
The brightness or the size of objects of interest is slightly manipu-
lated to enhance visualization. Fig. 4. The sub-process to describe the boundaries with increasing 

threshold values. The brightness or the size of objects of interest is 
slightly manipulated to enhance visualization.
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Fig. 5 illustrates the abovementioned procedure in detail. In 
addition, to compare the results obtained from the newly pro-
posed procedures described above with those of the conven-
tional methods, we performed cell segmentation and measure-
ments using watershed segmentation [11,12] and line intercept 
methods [8], respectively. The line segments were produced 
by breaking horizontal or vertical bars at the boundaries and 
selecting the lines placed on the cell regions within a spacing 
of 20 pixels between the bars. Then, the lengths of the select-
ed line segments were measured. 

Results and Discussion

The result of the image segmentation is shown in Fig. 6. 
Fig. 7 presents some images resulting from the application of 
the proposed procedures. The boundaries are constructed with 
various starting values of threshold light intensities of 60, 76, 

92, 108, 116, and 124, for the secondary cell-marking process. 
However, in this figure, the images of only three out of six 
threshold values are presented (60, 92, and 116). Fig. 8 shows 
various measured estimation results. Fig. 8(a) presents the 
total number of cells produced using each method. In the fig-
ure, numbers 1~6 represent our methods with initial threshold 
values of 60, 76, 92, 108, 116, and 124, respectively. Numbers 
7 represents the results obtained by the watershed segmenta-

Fig. 5. The sub-process to remove the additional closed objects 
caused by over-segmentation using binary-scale reconstruction. The 
brightness or the size of objects of interest is slightly manipulated to 
enhance visualization.

(a) (b)

Fig. 6. The top surface strut (white) image (a) and the cell marker 

(black) image resulted from the sub-process presented in Fig. 3(b) : 
640 pixels × 480 pixels, and about 107 pixels equal to 1 mm.

Fig. 7. The revised cell marker images (black) by including the low 
brightness regions to the primary marker image in Fig. 7 (left) and 
resultant images by adding strut image in Fig. 7 together with con-
structed boundaries (white) by sub-processes presented in Fig. 5 and 
Fig. 6 (right) : 640 pixels × 480 pixels, and about 107 pixels equal to 
1 mm.
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tion method, and numbers 8 and 9 are produced by measuring 
the resultant image using the horizontal and vertical line inter-
cept procedures without any boundary construction. On the 
other hand, numbers 1~7 estimate the cell size with mean 
diameter measurement using the automatic computer software 

(Image Pro plus 4.0, Cybernetics Ltd.) after the boundary con-
struction. 

Fig. 8(b) presents the mean brightness intensity value of the 
overlapped images. We compared the positions of the con-
structed boundaries produced by our method with those of the 
watershed segmentation method. In the image, the boundaries 
can be discriminated from the neighboring points through the 
higher brightness intensity. Consequently, the boundaries can 
be estimated by locating points with higher light intensity. 

Therefore, we investigate the mean brightness value of the 
pixels in the sample image whose placement corresponds to 
the boundaries. This has another significant implication in 
that the difference of boundary placement can determine a 
possibility of application of secondary marking process, which 
is introduced above as a cell marking method by the threshold 
operation. The secondary marking process is used for comple-
mentation of the primary cell marking process, because the 
primary cell marking includes a defect due to its response 
only to the strut shape, regardless of the light intensity levels 
in the cell region. Even though there is a patent clue that can 
be regarded as a boundary detected by change of intensity 
level using human vision, it is impossible to detect that with 
the primary marking process alone. Hence, the addition of the 

Fig. 8. (a) Total number of the cells produced by various segmentation or measurement methods; (b) Average brightness intensity values and 
total length of boundaries constructed by various methods; (c) Comparison of cell size at the cumulative fraction of 25%, 50%, 75%, 95%, and 
99%; (d) Average and standard deviation values of the cell roundness.
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secondary marking process is useful to produce a more satis-
factory discrimination between cells. For a proper application 
of the secondary marking process, the boundary must be 
placed very clearly to the gray intensity leveling, because this 
marking uses the threshold operation. In contrast, the water-
shed segmentation method cannot accept the application of 
this process, because it cannot consider any levels of light 
intensity. 

Fig. 8(c) shows the cell sizes, with the cumulative fraction 
values of 25%, 50%, 75%, 95%, and 99%. The cell size is 
considered as equal to the mean diameter of each cell which 
can be measured by the automatic computer software. We set 
the minimum size of the cell as the pixel distance value of 7, 
which is the range of the Gauss filter matrix (7 × 7) used for 
preprocessing. The resultant cell distribution by our proce-
dures can be estimated relative to other conventional methods 

[8,11,12]. The cell sizes at certain cumulative fractions are 
presented in the graph; the fractions of 25%, 50%, 75%, 95%, 
and 99% shown in the legend box. The numbers below the 
horizontal axis in the graph represent the measuring or seg-
mentation tools as shown in the figure. Comparing the resul-
tant distributions of the cell size, we find a significant differ-
ence between the measured cell sizes in the high fraction 
range. This is because the irregular shape of the top solid strut 
causes the watershed segmentation program to generate many 
false boundaries. The other reason is that the large cellular 
regions, highly interconnected with each other, produce long 
line segments that could be broken into two or more segments 
if boundaries are constructed between cells by watershed seg-
mentation. 

In our proposed method, an increase in the initial threshold 
results in a decrease in the total number of cells, and an 
increase the measured cell sizes in the high fraction range. 
The reason for this is that the number of cell markers is 
decreased when some primary cell markers are generated by 
the distance transform and gray scale reconstruction; these are 
included in the region below the initial threshold value in the 
sample image. This can lead to a decrease in the number of 
cells with high initial threshold values. However, it can be 
observed that, with an increase in the initial threshold value, 
cells of large size reduce in number, but increase in size, 
because the cell regions below the initial threshold values do 
not require boundary construction. Consequently, at high ini-
tial threshold values, one can expect that a few huge cells 
would occur. This is supported by Fig. 8(c), which shows the 
larger cell sizes in the fraction value range higher than 75%. 

Here, in the relatively lower range, the cell sizes become 
smaller with increase in the initial threshold values. 

In the watershed segmentation (number 7), cell sizes are 
smaller than measured by our procedures. This is probably 
because watershed segmentation constructs the boundaries 
based on the shape of the background image [11,12], the top 
solid struts in this study, and, therefore, an irregular back-
ground can give rise to lots of boundaries, often redundantly. 
The results of the line intercept method (number 8 and 9) 
shows that the measured sizes are about equal to or greater 
than those from our method, especially the size corresponding 
to 75%. This is caused by the highly interconnected cell 
regions that could otherwise be divided into two or more cel-
lular objects. 

Fig. 8(d) shows the average and standard deviation values 
of the roundness of the cells against their corresponding cell 
size. Because the roundness of a circular feature is unity, how 
close the average values are statistically to unity is equal to 
how close the shapes of cells are to circles as a whole. This 
figure shows that the values of roundness of the cells for our 
method are slightly closer to unity than for watershed seg-
mentation. This proves that, using our method, the boundaries 
of cells are shaped successfully as round-type which is similar 
to typical foam. With low and high initial threshold values, 
the shape of cells deviates from a homogeneous round shape. 
The reason for this is that, within the low threshold values, the 
regions are so highly segmented that this generates many 
small cells whose roundness values are considerably sensitive 
to change of pixel placement, and within the high initial thre-
shold values, the cell markers occupy a considerable portion 
of the image so that the cells are not suitably segmented. With 
the standard deviation values, we attempt to estimate statisti-
cally the homogeneity of the shape of cells. This can be deter-
mined and shows that the cells are more homogeneous in 
shape at lower threshold values. In Fig. 8(d), in general, the 
estimated cells are more homogeneous using our methods 
than the watershed segmentation method. Given the appropri-
ate cell-marking, the boundary construction can be more 
accurate in terms of brightness intensity as well as the shape 
of the background image. 

Conclusion

A new image processing algorithm to analyze the cellular 
structure of bioceramic foams consists of four steps, including 



 S-h Lee : Image Processing of Bioceramic Foam 141

image acquisition, preprocessing, segmentation, and measure-
ment, was proposed. The image segmentation step is com-
prised of the cell marking and cell boundary construction pro-
cesses. The cell marking process is further divided into prima-
ry and secondary sub-processes. After top surface solid regions 
are extracted from the image of the bioceramic foam surface, 
the cells are marked based on their shapes and spatial distri-
bution in the image; this is the primary cell marking. In addi-
tion, the secondary sub-process considers the light intensity 
levels using the threshold operation. Then, skeletonized boun-
daries are constructed. 

In contrast, the conventional processing (i.e., the watershed 
segmentation process) makes it impossible to apply that, 
because the operation can regard only the geometrical shape 
of objects and the background in an image, neglecting the 
light intensity of objects. Therefore, a boundary construction 
operation can describe the skeletonized boundaries based not 
only on the cell shapes, but also the light intensity of the cells. 
The effectiveness of the proposed reconstruction method is 
compared with the earlier methods, the result of the watershed 
segmentation method and, as for the cell size distribution 
measurement, with that of the line interception method. The 
advantage of the proposed construction method over the water-
shed segmentation lies in recognition of the light intensity as 
well as the strut shape. This can useful to process or manipu-
late any segmented cell object using the light intensity proper-
ties. 

Then, we measure the total number of cells, the mean cell 
diameter, the total length of the constructed boundaries and 
their corresponding light intensity in the sample image distri-
bution. As a result, we discovered that, up to cumulative dis-
tribution of 50%, the corresponding cell size is similar regard-
less of the process applied. However, over a cumulative distri-
bution of 75%, a larger deviation between our method and the 
other methods is observed, which is attributed to a coales-
cence of mid-sized cells that form larger cells on increasing 
the threshold value in secondary marking. 

Nomenclature

Roman

BX(Y)     :   an intermediate boundary construction step in an 
image Y, with threshold value X and X + 1. 

BcX(Y)    :   a revised boundary construction step involving 

removing faults that occurred in the BX(Y) step
DX          : domain set of image X, 
E            : structural element
I, J, C     : gray scale images
k            : a threshold value 
p            : a pixel included in the image.
S(X)       : skeleton operation of image X.
TX(Y)    :   threshold operation of image Y based on the thresh-

old value of X.

Greek 

δX
(r)(Y)  : the geodesic dilation r times

ρX(Y)     :   the binary scale reconstruction to extract the marker 

(Y) from the mask image (X)
ρ’ X(Y)   : the inversed boundary re-construction operation
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