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1. Introduction

Devastating damages caused by forest fire become increas-
ingly critical as reported in TV news or magazine. Needless to 
say, it is imperative to detect fire at an early stage to minimize 
damages prior to dispersion of fire and smoke. And yet, recent 
study in 2006 for fire accidents in Korea reports that the elec-
trical cause of fire accounts for nearly 30% out of the total 
number of fire accidents. This study also shows that detection 
rates of fire accidents remain 30% below, and thus an auto-

matic fire alarming system is urgently required to prevent fire 
damages. The direction of fire detection is largely two-fold: 
(1) the sensor based and (2) vision-based approaches. Related 
to vision-based models, any form of signal processing whose 
inputs are video frames [1-5] is also commonly video process-
ing. Sensor-based detection has an advantage of low cost and 
simple configurations, whereas vision-based detection can 
monitor wide areas as use of CCTVs is prevalent at present 
(See Fig. 1) [6]. Thus far, a range of vision-based fire detec-
tion algorithms have been developed on the basis of color, 
motion, flicker, spatial difference, disorder, and image train-
ing. The color-based fire detection algorithm is one of the 
most efficient methods to detect fire.

For instance, Fillips et al. [7] proposed a fire detection algo-
rithm using a pixel intensity difference in temporal domain 
and fire color characteristics with well-designed detection 
steps. This method, however, does not take into account 
sequences including flickering lights (e.g., electronic display 
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or sirens) and thus is not always suited to all circumstances 
despite its methodological novelty. Chen et al. [8] developed 
an equation on the basis of fire colors in RGB (Red, Green 
and Blue) space to detect characteristics of fire motion, and 
proposed a method that counts fire pixels by fire color. Inten-
sive R values and the pattern order (i.e., R>G>B) are found 
common in fire. Relative to fire accidents, Chen et al. [9] also 
proposed the color based smoke detection method. Important-
ly, smoke detection can be supportive, at least in part, to fire 
detection as smoke often accompanies fire. Yuan [10] pro-
posed an algorithm that detects smoke by using the upward 
motion of smoke that occurs in the hot air flow. Toreyin et al. 
[11] used wavelet subimage calculated by Discrete Wavelet 
Transform (DWT) to detect fire. Dedeoglu et al. [12] pro-
posed an algorithm that uses flicker that using DWT torrential 
temporal value. Interestingly, Chiu et al. [13] proposed an 
algorithm to detect fire in a tunnel environment. To this end, 
Chiu et al. [13] lights fires via diverse types of fuel in a tunnel 
to validate the utility of the detection algorithm (e.g., wind-
driven conditions). 

Verstockt et al. [14] proposed a fire detection algorithm 
adapted for car parks in collaboration with special equipment 
called a TOF (Time Of Flight) camera to measure depth and 
intensity of an image. When utilizing CCTVs, it is common 
that fire alarms are manually operated (i.e., eye-ball detec-
tion). Generally, many existing fire detection algorithms suf-
fer from false detection if feather appearance of fire like flick-
er lighting happens to appear on the screen; hence it is worth-
while that a fire detection algorithm builds on many video 
sequences. As related to all concerns above, we develop an 

algorithm that makes use of color variations in temporal 
domain. We tested if the proposed algorithm efficiently per-
forms in the real video sequences captured in various scenari-
os (e.g., flickering electronic signs, dancing in red color top, 
running people and CCTVs).

The paper is outlined as follows. In section 2, we discuss 
the definition and color characteristics of fire for detection in 
video, and a novel decision benchmark for fire detection that 
leverages the temporal domain. In an effort to verifying per-
formance, we implement many experimental studies. Finally, 
we make concluding remarks in section 5.

2. Method

2.1 Colorific features of fire

Generic colors of fire are red and yellow when the tempera-
ture lies below 1,000℃. Fire in low temperatures emits low 
frequency light that determines color of fire. Due to this color 
mixture, fire color is made of red and yellow colors for the 

Fig. 1. General vision based monitoring system.
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most part. For instance, we can clearly observe in Figs. 2 and 
3 the distinctive color alternations depending on temperatures. 
In this regard, we can selectively focus on colors between red 
and yellow associated with high R and low B values in the 

RGB domain. Since the G is featured with red and yellow col-
ors, the variation in G, at least in part, provides distinguish-
able signals to capture fire in video. On top of that, it is clear 
in Fig. 9 that variation of G overtime appears to be obvious, 

Fig. 3. Two different types of fire (i.e., natural and artificial fire).

Fig. 4. A part of fire (blaze) that appear for a short term.

Fig. 5. A part of fire (light) that appears for a long term.
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and thus G counts come into play as essentials for classifier. 
Importantly note that fire lights in various forms. Precisely, 
flickering flames in Fig. 3 (i.e., blaze) continue for a short 
time, while those of Fig. 4 last long as dominating the central 
body in fire. The central body and peripheral blaze determines 

the shape and types of fire on the whole. Putting together, we 
propose a fire detection algorithm exploiting two major com-
ponents: (1) colors and (2) forms in fire.

3. Proposed Algorithm

In this chapter, we introduce a novel method to detect fire 
on the basis of temporal data in RGB domain. In what fol-
lows, we categorize characteristics of fire into short-term fire 
(SF), long-term fire (LF) and flickered fire (FF). 

3.1 Short-term fire (SF)
R, G and B counts are benchmarked by:
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where TH1 and TH2 denote the pre-defined constants, where  
TH1 = 0 and TH2 = 3. This numerical benchmark in (1) is 
designed to characterize the upper end of fire in Fig. 4, whose 
temperature is lower than inner parts of that. The proposed 
algorithm binds 150 frames as a basis for analysis, equivalent-
ly total frames over five seconds (30 frames/seconds).

3.2 Long-term fire (LF)
Generally fire at center is seen constantly glowing over the 

period of combustion, and thus long-term fire (LF) is subject 
to temporal information such as persistence of fire light. 
Below we construct the second benchmark purposely target-
ing at deep red color: high R, low G and low B values: long-
term fire (LF) is defined as follows:

Fig. 6. R data counts on pixels of short-term fire. Some intense R 
values are observed. X-axis : value range, Y-axis : number of counts.

Fig. 7. R and G data counts graph on pixels of long-term fire. Very 
high R and G values are observed.

(a)
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R data counts

R data counts
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topological attributes of image pixels. (1) The initial task 
examines if a 16 × 16 pixel block satisfies simultaneous pres-
ence of LF, SF and FF. Fig. 10 enumerates failures of fire 
detection when feathers-like images interrupt fire detection. 

	 (a)	 (b)

Fig. 8. (a) Original image of fire, (b) Fire image delineated by using three conditions (short-term fire (SF) - green, long-term fire (LF) - blue, 
flickering fire (FF) - red).

Fig. 9. (a) G data counts graph of flickering fire, (b) G value varia-
tion graph for 150 frames; (b) shows that G values are frequently 
changed in flickering part of fire. X-axis of (b): frame number, Y-axis 
of (b): value of G.

(b)

(a) G data counts

G_value/Frame graph(one pixel)
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To tackle this challenge, we figure out distinctions in motion 
between genuine fire and confounding images. (2) The second 
condition is that LF is to appear in bottom areas. Surprisingly 
most of fire in Fig. 10 is formed with LF at the bottom 
regions, whereas other non-fire images show that LF scatters 
in no order. (3) The following is the third condition: if a cur-
rent pixel whose neighboring pixels nearby placed in diagonal 
positions (i.e., four pixels: left, right above and below) are not 
at least two identical ones of SF, LF and FF, the target pixel is 
excluded for decision as likely be non-fire pixels. Chances are 
that separated individual pixels constitute non-fire images as 
in Fig. 10. Taken together, the final decision rule effectively 
rules out dancing people and running people in the streets as 
non-fire sequences.

4. Experimental Studies

In the experiments, we assess whether the proposed algo-

rithm effectively reduces low false detection rates using 
320 × 240 or 352 × 240 video sequences. In Table 1, true posi-
tive (TP) indicates that the algorithm correctly detects fire, 
and false positive (FP) means the algorithm falsely declares 
fire. Table 1 includes the class labels of fire (i.e., true or 
false), video sequence descriptions and causes of false detec-
tion. It is evident to say that the proposed algorithm outstand-
ingly distinguishes fire events with almost no false detection. 
Diverse experiments remain a hint of false detection or late 
detection. This is due to white color and light because over-
saturation of bright light in a camera, resulting in false detec-
tion. On the contrary, too little light hampers correct detec-
tion. Besides white color in non-fire images is colorific equiv-
alent to light in temporal domain. A majority of non-profes-
sional cameras cannot distinguish light and white color. And 
yet there is room for improvement if applying infrared camer-
as [15]. Out of 24 videos, our algorithm precisely detects 23 
video sequences. However, the falsely detected one implicates 

Fig. 10. (a)-(b): fire images, (c)-(f): images of moving people. In the (a)-(b), LF (blue) is consistently placed at the bottom. To the contrary, no 
regular order of SF, LF and FF appears in (c)-(f).

(a) (b) (c)

(d) (e) (f)
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that our algorithm less effective to capture fire extinguished 
too soon to discern.

5. Conclusion

Of late, a variety of fire detection methods have been prac-
tically applied but yet none of vision-based algorithms (e.g., 
CCTV) is shown effective to false detection rates. It is essen-

tial to improve false detection rates as a central challenge to 
embed into an alarm monitoring system. To this end, we pro-
pose the fire detection method that builds on fire forms 
together with RGB values. Our algorithm is found to effi-
ciently detect fire and reduce the false alarm possibly attribut-
ed to fire flickers. From the experimental studies using 24 
video sequences, the proposed algorithm obtains accuracy 
higher than 90%. Putting together, this surpassing perfor-

Fig. 11. Images detected by proposed algorithm that appear in Table 1.
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Table 1. The number of frame that the first alarm has occurred.

Snapshot image
Info

Snapshot image
Info

Number of 
frame(f) Detection Description Number of 

frame(f) Detection Description

300 T Fire indoors - T Car lights in the dark

150 T Fire indoors - T Electronic lights in the 
dark

150 T Fire indoors - T Flickering lights in the 
dark

150 T Fire indoors - T Electronic signs in the 
dark

450 T Oversaturated fire behind 
the car - T Dancing in red top

150 T Fire indoors - T Surveillance camera of 
library

150 T Industrial fire - T Tollgate

150 T Fire indoors - T CCTV

150 T Fire indoors - T CCTV

- F Due to dark tones - T Running people in CCTV

150 T Fire in the garden - T CCTV

150 T Fire in the barbeque grill - T Moving camera



	 Hwang U et al. : Fire Detection in Temporal Domain	 89

mance suggests that our algorithm can potentially facilitate 
fire monitoring. Nevertheless, the proposed algorithm has a 
tendency to fall in false negative in case of low light intensity. 
To overcome this, permutation tests to get P-value [16] 
designed to capture blurred signals or l

1
-Penalty estimation 

model [17] can be solutions to algorithm improvement We 
leave this topic to improve further for future study.
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