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Introduction

Pim kinases, Pim-1, Pim-2, and Pim-3, are members of a 
family of serine/threonine kinases that regulate the cellular 
signaling pathways involved in cancer development and pro-
gression [1]. Pim kinases are overexpressed in hematologic 
cancers and phosphorylate downstream substrates which con-
tribute to tumor growth and survival [2]. According to the 
crystal structures of Pim-1 and Pim-2, the Pim kinase family 
has a unique proline (Pro123 in Pim-1) residue in the hinge 
region and lacks a hydrogen bond donor which makes one 
hydrogen bond interaction with ATP. Therefore Pim kinases 
can make only one hydrogen bond to the adenine of ATP, 
which is a distinct character of Pim kinases compared with 
other serine/threonine kinases [3,4]. Most of the reported Pim 
kinase inhibitors utilize interaction with the amino residue of 

lysine (Lys67 in Pim-1) in the ATP binding site as an alterna-
tive driving force for the binding (Table 1). Therefore, it would 
be possible to design highly selective inhibitors for this drug 
target. As a process of developing selective Pim kinase inhibi-
tors, a new binding motif which interacts with the e-amino res-
idue of lysine was investigated using 5-membered heteroaro-
matic compounds.

Experimental

Materials and Instruments

1H- NMR and 13C-NMR spectra were recorded on a Bruker 
Spectrospin 400 (400 MHz) or Jeol ECA 500 (500 MHz) spec-
trometer. Chemical shifts (δ, ppm) are reported in ppm using 
tetramethylsilane as an internal standard. Mass spectra were 
obtained using Waters ACQUITY UPLC, Micromass Quattro 
microTM API. Microwave assisted reactions were performed 
with CEM Discover BenchMate. TLC was performed on E. 
Merck silica gel 60 F254 plates (0.25 mm). Silica gel column 
chromatography was performed using Merck silica gel 60 
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(230~400 mesh). Unless otherwise noted, all starting materi-
als were obtained from commercially available sources and 
they were used without further purification. All reactions were 
performed under nitrogen atmosphere.

Synthesis

3-Bromobenzohydrazide (1)

A microwave vessel was filled with ethyl 3-bromobenzo-
ate (0.44 mmol, 0.10 g), hydrazine hydrate (2.6 mmol, 0.081 

mL) and 1 mL ethanol (EtOH). The reaction mixture was irra-
diated for 10 min at 120°C by applying 100 W. The solvent was 

removed in vacuo. After the residue was treated with ethyl 
acetate (EA), the residue was purified by column chromatog-
raphy over silica gel (n-hexane (Hex) : EA, 1 : 2) to yield 0.034 

g (32%) of the title compound. 1H NMR (400 MHz, DMSO-
d6): δ 9.90 (s, 1H), 7.98 (s, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.65 

(d, J = 8.0 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 4.48 (s, 2H).

5-(3-Bromophenyl)-1,3,4-oxadiazole-2(3H)-thione (2)

To the EtOH (5 mL) solution of compound 1 (0.16 mmol, 
0.034 g) were added potassium hydroxide (KOH) (0.19 mmol, 
0.011 g) and carbon disulfide (CS2) (0.40 mmol, 0.024 mL), 
the resulting mixture was stirred for 30 min at 0°C. After stir-

Table 1. Structures of the lysine binding motifs of the reported Pim kinase inhibitors

Functional 
group Structure Ref. Functional 

group Structure Ref.

Carboxylate [5] Pyridine [6-8]

Ketone [9,10] Pyrazine  [11-14]

Thiazolidine-
2,4-dione [15,16] Pyrazolopyrimidine [17]

Amide [18] Triazolopyridine [19]

[20] 1,3,4-Oxadiazol-
2-amine [13]

[21] 1,3,4-Thiadiazol-
2-amine [22]

[23] Pyrazole [24]

[25]
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ring for 1 h at room temperature, the mixture was refluxed for 
2 h. After removal of solvent in vacuo, the residue was treated 
with 2 M hydrochloric acid (HCl) solution until the pH of the 
solution became 2. The product was extracted with EA from 
the acidic solution and was washed with water and brine. The 
organic layer was dried over anhydrous MgSO4 and the sol-
vent was removed in vacuo. The residue was purified by col-
umn chromatography over silica gel (dichloromethane (DCM) : 

methanol (MeOH), 95 : 5) to yield 0.020 g (49%) of the title 
compound. 1H NMR (400 MHz, DMSO-d6): δ 14.79 (s, 1H), 
7.97 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 
7.52 (t, J = 8.0 Hz, 1H); 13C NMR (100 MHz, DMSO-d6): δ 

178.02, 159.71, 135.44, 132.20, 128.87, 125.68, 125.19, 
122.91; ESI-MS m/z: 257 (M + H)+.

Isobutyl 3-bromobenzimidate hydrochloride (3)

3-Bromobenzonitrile (0.55 mmol, 0.1 g) was added to the 
mixture of 1.0 mL isobutanol and 1.0 mL chloroform (CHCl3). 
To the solution was added acetyl chloride (2.8 mmol, 0.195 

mL), and the mixture was stirred for 2 h at 30°C. After remov-
al of solvent in vacuo, the residue was extracted with DCM. 
Removal of solvent in vacuo gave 0.093 g (58%) of the title 
compound. 

3-Bromobenzimidohydrazide (4)

To the 1 mL acetonitrile (AcCN) solution of compound 3 

(0.32 mmol, 0.093 g) was added hydrazine hydrate (0.59 mmol, 
0.018 mL), and the resulting mixture was stirred for 4 h at 0°C. 
After removal of solvent in vacuo, the residue was treated with 
0.1 M sodium hydroxide (NaOH) solution until the pH of the 
solution became 13. The product was extracted with EA from 
the basic solution and was washed with water and brine. The 
organic layer was dried over anhydrous MgSO4 and the sol-
vent was removed in vacuo. Removal of solvent in vacuo gave 
0.094 g (72%) of the title compound. 

1H NMR (400 MHz, DMSO-d6): δ 8.05 (t, J = 1.6 Hz, 1.68 

Hz, 1H), 7.8 (d, J = 7.96 Hz, 1H), 7.58 (dd, J = 6.96 Hz, 1H), 
7.34 (t, J = 7.96 Hz, 7.88 Hz, 1H), 6.49 (s, 1H), 2.00 (s, 3H).

5-(3-Bromophenyl)-1,3,4-thiadiazole-2(3H)-thione (5)

To the 1 mL EtOH solution of compound 4 (0.44 mmol, 0.094 

g) was added carbon disulfide (CS2) (1.32 mmol, 0.080 mL), 
and the resulting mixture was stirred for 30 min at 0°C and then 
1 h at room temperature. After removal of solvent in vacuo, the 
residue was extracted with DCM. Removal of solvent in vacuo 
gave 0.056 g (47%) of the title compound. 1H NMR (400 MHz, 

DMSO-d6): δ 14.84 (s, 1H), 7.92 (s, 1H), 7.77 (d, J = 1.84 Hz, 
1H), 7.75 (d, J = 1.88 Hz, 1H), 7.49 (t, J = 7.92 Hz, 1H); 13C 
NMR (100 MHz, DMSO-d6): δ 188.23, 143.21, 134.13, 132.91, 
129.72, 128.01, 123.84; ESI-MS m/z: 273 (M + H)+.

(Z)-3-Bromo-N’-hydroxybenzimidamide (6)

The mixture of hydroxylamine hydrochloride (5.49 mmol, 
0.382 g), potassium carbonate (8.24 mmol, 1.14 g), and 50 mL 
MeOH was stirred for 30 min. Then 3-bromobenzonitrile (2.75 

mmol, 0.500 g) was added to the mixture and it was refluxed 
for 12 h. After removal of solvent in vacuo, the residue was dis-
solved in DCM. The resulting solution was washed with 10% 
citric acid and was dried over anhydrous Na2SO4. The remov-
al of solvent in vacuo gave the title compound quantitatively. 
1H NMR (400 MHz, DMSO-d6): δ 9.82 (s, 1H), 7.84 (s, 1H), 
7.69 (d, J = 7.6 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 7.6 

Hz, 1H), 5.93 (s, 2H). 

3-(3-Bromophenyl)-1,2,4-oxadiazol-5(4H)-one (7) 

To the 10 mL dioxane solution of compound 6 (0.2 mmol, 
0.05 g) were added carbonyl diimidazole (CDI) (0.35 mmol, 
0.057 g), and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.26 
mmol, 0.039 g). After refluxing 2 h, the solvent was removed 
in vacuo. After the residue was dissolved in DCM, the result-
ing solution was washed with 10% citric acid and brine. The 
organic layer was dried over anhydrous Na2SO4 and the sol-
vent was removed in vacuo. The residue was purified by col-
umn chromatography over silica gel (DCM : MeOH, 95 : 5) to 
yield 0.049 g (85%) of the title compound. 1H NMR (400 MHz, 
DMSO-d6): δ 7.9 (s, 1H), 7.98 (m, 2H), 7.55 (t, J = 8 Hz, 1H); 
ESI-MS m/z: 241 (M + H)+.

Ethyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)

benzoate (8)

A microwave vessel was filled with Ethyl 3-bromobenzoate 

(1.0 mmol, 0.20 g), bis(pinacolato)diboron (1.1 mmol, 0.24 g), 
potassium acetate (KOAc) (3.0 mmol, 0.26 g), (1,1’-bis(dip- 
henylphosphino) ferrocene)dichloropalladium(II) (PdCl2(dppf)) 

(0.030 mmol, 0.020 g) and 2.4 mL of dioxane : EtOH (5 : 1) mix-
ture. The reaction mixture was irradiated for 10 min at 120°C 
by applying 100 W. The solvent was removed in vacuo. After 
the residue was treated with dichloromethane, it was filter 
with aid of celite. The filtrate was collected and solvent was 
removed in vacuo. The residue was purified by column chro-
matography over silica gel (Hex : EA, 5 : 1) to yield 0.24 g 

(99%) of the title compound. 1H NMR (500 MHz, CDCl3): δ 
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8.46 (s, 1H), 8.14 (d, J = 7.5 Hz, 1H), 7.98 (d, J = 7.5 Hz, 1H), 
7.45 (t, J = 7.5 Hz, 1H), 4.39 (q, J = 7.0 Hz, 2H), 1.40 (t, J =  
7.5 Hz, 3H), 1.36 (s, 12H).

2-((6-Chloropyrazin-2-yl)oxy)-N,N-dimethylethanamine (9)

A microwave vessel was filled with 2-(N,N-Dimethylami-
no)ethanol (0.81 mmol, 0.081 mL), sodium hydride (NaH) (2.0 
mmol, 0.048 g) and 1 mL tetrahydrofuran (THF) and the mix-
ture was stirred for 10 min. After addition of 2,6-dichloropyr-
azine (0.67 mmol, 0.10 g), the reaction mixture was irradiated for 
10 min at 50°C by applying 100 W. The solvent was removed 
in vacuo. After the residue was treated with EA, the resulting 
solution was washed with water and brine. The organic layer 
was dried over anhydrous MgSO4. The removal of solvent in 
vacuo gave 0.049 g (89%) of the title compound. 1H NMR (400 

MHz, CDCl3): δ 8.19 (s, 1H), 8.14 (s, 1H), 4.44 (t, J = 5.4 Hz, 
2H), 2.74 (t, J = 5.4 Hz, 2H), 2.34 (s, 6H).

Ethyl 3-(6-(2-(dimethylamino)ethoxy)pyrazin-2-yl)benzoate 

(10)

A microwave vessel was filled with compound 8 (0.72 mmol, 
0.20 g), compound 9 (0.87 mmol, 0.18 g), tetrakis(triphenylp- 
hosphine)palladium (Pd(PPh3)4) (0.022 mmol, 0.025 g), 2.0 M 
Na2CO3 aqueous solution (0.36 mmol, 1.8 mL), and 1.0 mL eth-
ylene glycol dimethyl ether (DME). The reaction mixture was 
irradiated for 10 min at 110°C by applying 100 W. The solvent 
was removed in vacuo. After the residue was treated with 
dichloromethane, it was filter with aid of celite. The filtrate 
was collected and solvent was removed in vacuo. The residue 
was purified by column chromatography over silica gel (DCM : 

MeOH, 97 : 3) to yield 0.20 g (87%) of the title compound. 1H 
NMR (400 MHz, CDCl3): δ 8.67 (s, 1H), 8.65 (s, 1H), 8.25 (s, 
1H), 8.22 (d, J = 8.0 Hz, 1H), 8.13 (d, J = 7.6 Hz, 1H), 7.57 (t, 
J = 7.6 Hz, 1H), 4.58 (t, J = 5.6 Hz, 2H), 4.44 (q, J = 7.2 Hz, 
2H), 2.80 (t, J = 5.6 Hz, 2H), 2.38 (s, 6H), 1.44 (t, J = 7.2 Hz, 
3H).

3-(6-(2-(Dimethylamino)ethoxy)pyrazin-2-yl)benzohydrazide 

(11)

A microwave vessel was filled with compound 10 (0.16 
mmol, 0.050 g), hydrazine hydrate (1.6 mmol, 0.050 mL) and 
1 mL ethanol (EtOH). The reaction mixture was irradiated for 
10 min at 120°C by applying 100 W. The solvent was removed 
in vacuo. The residue was purified by column chromatogra-
phy over silica gel (CHCl3

 : MeOH : NH4OH, 100 : 10 : 1) to 
yield 0.078 g (82%) of the title compound. 1H NMR (400 MHz, 

DMSO-d6): δ 9.94 (s, 1H), 8.83 (s, 1H), 8.53 (s, 1H), 8.24 (d, 
J = 6.8 Hz, 1H), 8.22 (s, 1H), 7.92 (d, J = 6.4 Hz, 1H), 7.58 (t, 
J = 7.6 Hz, 1H), 4.53 (t, J = 5.6 Hz, 4H), 2.70 (t, J = 5.6 Hz, 
2H), 2.24 (s, 6H).

5-(3-(6-(2-(Dimethylamino)ethoxy)pyrazin-2-yl)phenyl)-

1,3,4-oxadiazole-2(3H)-thione (12)

To the EtOH (3 mL) solution of compound 11 (0.26 mmol, 
0.078 g) were added KOH (0.31 mmol, 0.017 g) and CS2

 (0.65 

mmol, 0.039 mL), the resulting mixture was stirred for 30 min 
at 0°C. After stirring for 1 h at room temperature, the mixture 
was refluxed for 1 h. After removal of solvent in vacuo, the res-
idue was treated with 2 M hydrochloric acid (HCl) solution 
until the pH of solution became 2. Then the acidic solution 
was basified with 2 M NaOH solution until the pH of solution 
became 14. After removal of solvent in vacuo, the residue was 
treated with DCM : MeOH (90 : 10) mixture and filtered with 
aid of celite. After removal of solvent from the filtrate, the res-
idue was purified by column chromatography over silica gel 

(CHCl3
 : MeOH : NH4OH, 80 : 10 : 1) to yield 0.030 g (34%) of 

the title compound. 1H NMR (500 MHz, DMSO-d6): δ 8.79 (s, 
1H), 8.45 (s, 1H), 8.22 (s, 1H), 8.12 (d, J = 8.5 Hz, 1H), 7.84 (d, 
J=8.5 Hz, 1H), 7.59 (t, J=8.0 Hz, 1H), 4.49 (t, J=5.5 Hz, 2H), 
2.67 (t, J = 6.0 Hz, 2H), 2.20 (s, 6H); 13C NMR (100 MHz, 
DMSO-d6): δ 180.52, 174.28, 161.25, 159.51, 147.69, 136.91, 
134.60, 133.68, 130.27, 128.18, 126.63, 123.33, 64.07, 57.73, 
45.80, 23.12; ESI-MS m/z: 344 (M + H)+.

5-(3-(6-(2-(Dimethylamino)ethoxy)pyrazin-2-yl)phenyl)-

1,3,4-thiadiazole-2(3H)-thione (13) 

To the EtOH (2 mL) solution of compound 11 (0.17 mmol, 
0.050 g) were added KOH (0.25 mmol, 0.014 g) and CS2

 (0.33 

mmol, 0.020 mL), the resulting mixture was stirred for 30 min 
at 0°C. After stirring for 24 h at room temperature, the solvent 
was removed in vacuo. To the residue was added sulfuric acid 

(1.68 mmol, 0.088 mL) by dropwise and the mixture was stirred 
10 min at -5°C. After addition of a small amount of ice, the 
acidic solution was basified with 2 M NaOH solution until the 
pH of solution became 14. After removal of solvent in vacuo, 
the residue was treated with DCM : MeOH (90 : 10) mixture 
and filtered with aid of celite. After removal of solvent from 
the filtrate, the residue was purified by column chromatogra-
phy over silica gel (CHCl3

 : MeOH : NH4OH, 85 : 15 : 1.5) to 
yield 0.032 g (54%) of the title compound. 1H NMR (500 MHz, 
DMSO-d6): δ 8.40 (s, 1H), 8.37 (s, 1H), 8.05 (s, 1H), 7.85 (d, 
J = 7.5 Hz, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.58 (m, 1H), 4.11 (t, 
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J = 7.1 Hz, 2H), 2.82 (s, 6H), 2.76 (t, J = 7.1 Hz, 2H); 13C NMR 

(100 MHz, DMSO-d6): δ 187.22, 162.24, 150.70, 143.71, 
139.97, 133.18, 131.14, 130.16, 129.88, 129.60, 129.23, 
126.31, 66.26, 60.56, 47.02; ESI-MS m/z: 360 (M + H)+.

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile 

(14)

A microwave vessel was filled with 3-bromobenzonitrile 

(1.37 mmol, 0.250 g), bis(pinacolato)diboron (1.51 mmol, 0.384 

g), KOAc (4.12 mmol, 0.404 g), PdCl2(dppf)) (0.041 mmol, 
0.030 g), and 3 mL of dioxane. The reaction mixture was irra-
diated for 10 min at 120°C by applying 100 W. The solvent was 
removed in vacuo. After the residue was treated with dichlo-
romethane, it was filter with aid of celite. The filtrate was col-
lected and solvent was removed in vacuo to give 0.20 g (64%) 
of the title compound. 1H NMR (500 MHz, CDCl3): δ 8.03 (d, 
J = 7.5 Hz, 1H), 7.92 (d, J = 7.5 Hz, 1H), 7.69 (s, 1H), 7.63 (t, 
J = 7.5 Hz, 1H), 1.29 (s, 12H).

3-(6-(2-(Dimethylamino)ethoxy)pyrazin-2-yl)benzonitrile (15)

A microwave vessel was filled with compound 14 (0.87 

mmol, 0.20 g), compound 9 (0.87 mmol, 0.18 g), PdCl2(PPh3)2
 

(0.026 mmol, 0.018 g), 2.0 M K2CO3 aqueous solution (0.26 

mmol, 1.3 mL), and 2.4 mL of dioxane : EtOH (5 : 1) mixture. 
The reaction mixture was irradiated for 10 min at 120°C by 
applying 100 W. The solvent was removed in vacuo. After the 
residue was treated with DCM : MeOH (95 : 5) mixture, it was 
filter with aid of celite. The filtrate was collected and solvent 
was removed in vacuo. The residue was purified by column 
chromatography over silica gel (DCM : MeOH, 95 : 5) to yield 
0.15 g (64%) of the title compound. 1H NMR (400 MHz, CDCl3): 
δ 8.61 (s, 1H), 8.36 (s, 1H), 8.29 (s, 1H), 8.23 (d, J = 8 Hz, 1H), 
7.74 (d, J = 8 Hz, 1H), 7.61 (t, J = 8 Hz, 1H), 4.56 (t, J = 6 Hz, 
2H), 2.81 (t, J = 6 Hz, 2H), 2.39 (s, 6H).

(Z)-3-(6-(2-(Dimethylamino)ethoxy)pyrazin-2-yl)-N’-

hydroxybenzimidamide (16)

The mixture of hydroxylamine hydrochloride (1.1 mmol, 
0.078 g), K2CO3

 (1.4 mmol, 0.19 g), and 20 mL MeOH was 
stirred for 20 min. The mixture was added compound 15 (0.56 

mmol, 0.15 g) and refluxed for 10 h. After removal of solvent in 
vacuo, the residue was treated with DCM : MeOH (95 : 5) mix-
ture and filtered. The filtrate was collected and the solvent mix-
ture was removed in vacuo. The residue was purified by col-
umn chromatography over silica gel (CHCl3

 : MeOH : NH4OH, 
100 : 10 : 1) to yield 0.084 g (50%) of the title compound. 1H 

NMR (400 MHz, CDCl3): δ 9.77 (s, 1H), 8.86 (s, 1H), 8.39 (s, 
1H), 8.28 (s, 1H), 8.13 (d, J = 8 Hz, 1H), 7.80 (d, J = 8 Hz, 1H), 
7.54 (t, J = 8 Hz, 1H), 5.99 (s, 2H), 4.53 (t, J = 6 Hz, 2H), 3.39 

(s, 6H), 2.69 (t, J = 6 Hz, 2H).

3-(3-(6-(2-(Dimethylamino)ethoxy)pyrazin-2-yl)phenyl)-

1,2,4-oxadiazol-5(4H)-one (17) 

To the 10 mL N,N-dimethylformamide (DMF) solution of 
compound 16 (0.022 mmol, 0.065 g) were added carbonyl di- 
imidazole (CDI) (0.32 mmol, 0.052 g) and K2CO3

 (0.24 mmol, 
0.033 g). After stirring 15 h at 80°C, the solvent was removed 
in vacuo. The residue was purified by column chromatography 
over silica gel (DCM : MeOH, 90 : 10) to yield 0.046 g (66%) 
of the title compound. 1H NMR (500 MHz, DMSO-d6): δ 8.87 

(s, 1H), 8.54 (s, 1H), 8.31 (s, 1H), 8.23 (d, J = 8 Hz, 1H), 7.91 

(d, J = 8 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 4.67 (t, J = 6 Hz, 
2H), 3.18 (t, J = 6 Hz, 2H), 2.59 (s, 6H); 13C NMR (100 MHz, 
DMSO-d6): δ 162.25, 159.51, 150.69, 139.96, 133.68, 130.27, 
128.90, 128.01, 126.38, 123.33, 64.07, 59.73, 45.80; ESI-MS 

m/z: 328 (M + H)+.

Assay Method

The activity of Pim-1, Pim-2, and Pim-3 kinases was mea-
sured using a fluorescence polarization assay method [26]. 

Statistical Analysis

Statistical analysis was conducted using SPSS 25 software. 
One-way analysis of variance (ANOVA) was performed to 
identify significant differences. The Duncan test was used to 
determine the difference between groups (P<0.05).

Results and Discussion

Various heteroaromatic rings with acidic characters are used 
as carboxylic acid bioisosteres in the field of medicinal chem-
istry. Examples of these heteroaromatics are tetrazole, 1,2,4- 
oxadiazol-5-one, 1,2,4-oxadiazol-5-thione, 1,3,4-oxadiazole-
2-thione and 1,2,3,5-oxathiadiazol-2-oxide rings. Among 
these heterocycles, 1,2,4-oxadiazol-5(4H)-one with a pKa value 
of 5.3 [27], 1,3,4-oxadiazole-2(3H)-thione with a pKa value of 
4.4 [28], and 1,3,4-thiadiazole-2(3H)-thione with a pKa value 
of 4.98 [29] were chosen to find a new binding motif as expect-
ed to interact with the lysine residue of Pim kinases.

Compound 2 was synthesized from ethyl 3-bromobenzoate 
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as shown in scheme 1. After the conversion of the functional 
group from ester to hydrazide using hydrazine, a cyclization 
reaction with carbon disulfide under basic condition gave 

1,3,4-oxadiazole-2(3H)-thione.
Compound 5 was synthesized from 3-bromobenzonitrile as 

shown in scheme 2. The cyano group was converted to benz-

Scheme 1. Reagents and experimental conditions: (a) hydrazine hydrate, ethanol, microwave; (b) KOH, CS2, EtOH, reflux.

Scheme 2. Reagents and experimental conditions: (a) i-BuOH, AcCl, CHCl3; (b) H2NNH2 · H2O, AcCN;  (c) CS2, EtOH, reflux.

Scheme 3. Reagents and experimental conditions: (a) HONH2 · HCl, K2CO3, MeOH; (b) CDI, DBU, dioxane, reflux.

Table 2. Enzyme inhibitory activities of synthesized compounds against Pim kinases

R
IC50 (μM)

Pim-1 Pim-2 Pim-3

2 1,3,4-oxadiazole-2(3H)-thione 2.2±0.4* >10 >10

5 1,3,4-thiadiazole-2(3H)-thione >10 >10 >10

7 1,2,4-oxadiazol-5(4H)-one 5.4±0.4* >10 8.4±0.2

* p<0.05



 Lee AY et al. : 1,3,4-Oxadiazole-2(3H)-thione 119

imidate, 3, which was further modified to benzimidohydrazide, 
4. A cyclization reaction with carbon disulfide gave 1,3,4-thi-
adiazole-2(3H)-thione.

Compound 7 was synthesized from 3-bromobenzonitrile as 
shown in scheme 3. After the conversion of a functional group 
from nitrile to N-hydroxybenzimidamide, 6, a cyclization reac-
tion gave 1,2,4-oxadiazol-5(4H)-one.

Compound 12 and 13 were synthesized as shown in scheme 
4. A palladium-catalyzed borylation at the position 3 of ethyl 
3-bromobenzoate was carried out with bis(pinacolato)diboron. 
A Suzuki coupling reaction between compounds 8 and 9 gave 
a compound 10. After the conversion of ester to hydrazide 
group using hydrazine, a cyclization reaction at different reac-
tion conditions gave 5-membered heteroaromatic rings, 1,3,4- 
oxadiazole-2(3H)-thione, 12, and 1,3,4-thiadiazole-2(3H)-thi-
one, 13.

Compound 17 was synthesized as shown in scheme 5. A pal-

ladium-catalyzed borylation at the position 3 of 3-bromoben-
zonitrile was carried out with bis(pinacolato)diboron. Suzuki 
coupling reaction between compounds 14 and 9 gave a com-
pound 15. After the conversion of cyano group to N’-hydroxy-
benzimidamide group using hydroxylamine, a cyclization reac-
tion a 5-membered heteroaromatic ring, 1,2,4-oxadiazol-5(4H)- 
one, 17.

As a first step, three benzene analogs were synthesized by 
replacing an H atom of the benzene ring with one of the each 
heteroaromatic ring. The effects of those compounds on the 
activity of Pim kinases are shown in Table 2. Two compounds, 
2 and 7, showed the inhibitory activities against Pim-1 kinase 
with a single digit micromolar IC50 values. 1,3,4-Oxadiazole-
2(3H)-thione derivative, 2, was about twice potent for Pim-1 
than 1,2,4-oxadiazol-5(4H)-one derivatives, 7. However, they 
did not show any inhibitory activities against Pim-2 kinase up 
to 10 μM concentration. 1,3,4-Thiadiazole-2(3H)-thione deriv-

Scheme 4. Reagents and experimental conditions: (a) bis(pinacolato)diboron, PdCl2(dppf), KOAc, 1,4-dioxane : ethanol (5 : 1), microwave; (b) 
NaH, 2-(dimethylamino)ethanol, THF, microwave; (c) PdCl2(PPh3)2, 2M Na2CO3, DME, microwave; (d) H2NNH2 · H2O, EtOH, microwave; (e) 
CS2, KOH, EtOH, reflux; (f) CS2, KOH, EtOH, then H2SO4.
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atives, 5, did not show inhibitory activities against all three Pim 
kinases 

According to the above data, two heteroaromatic rings are 
playing important roles for the binding of compounds to Pim 
enzymes. To support the findings, the effects of structural mod-

ifications on the inhibitory activity were studied. Additional 
binding motifs such as hydrophobic group and hydrogen bond 
donor group were attached to the compounds 2, 5, 7. The 
effects of the substitutions of a bromo group with 2-(dimethyl-
amino)ethoxy)pyrazine at the 3 position of benzene ring are 

Scheme 5. Reagents and experimental conditions: (a) bis(pinacolato)diboron, PdCl2(dppf), KOAc, dioxane, microwave; (b) NaH, 2-(dimethyl-
amino)ethanol, THF, microwave; (c) PdCl2(PPh3)2, 2M Na2CO3, dioxane : EtOH (5 : 1), microwave; (d) HONH2 · HCl, K2CO3, MeOH; (e) CDI, 
K2CO3, DMF, 80°C.

Table 3. Enzyme inhibitory activities of synthesized compounds against Pim kinases

R
IC50 (μM)

Pim-1 Pim-2 Pim-3

12 1,3,4-oxadiazole-2(3H)-thione 0.5±0.009* 1.6±0.04 0.6±0.15*

13 1,3,4-thiadiazole-2(3H)-thione 4.9±0.3* >10 2.3±0.2*

17 1,2,4-oxadiazol-5(4H)-one 1.3±0.03* >10 1.0±0.05*

* p<0.05
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summarized in Table 3.
An introduction of additional binding motifs to 1,3,4-oxadi-

azole-2(3H)-thione and 1,2,4-oxadiazol-5(4H)-one rings (12 
and 17, respectively) improved the potency of compounds 
more than 3 times against both Pim-1 and Pim-3 kinases. For 
the 1,3,4-thiadiazole-2(3H)-thione rings, the addition of bind-
ing motifs, 13, resulted in a potency increase for both Pim-1 
and Pim-3 kinases. The most interesting result is the potency 
of compound 12 against Pim-2 kinase. The inhibitory activity 
of 1,3,4-oxadiazole-2(3H)-thione derivative was enhanced to 
a single digit micromolar IC50 value against Pim-2 kinase. 
Also, it showed submicromolar IC50 values for Pim-1 and Pim- 
3 kinases.

The binding modes of three compounds were studied using 
a molecular modeling program as shown in Figs. 2 and 3 

[30,31]. Because three heteroaromatic rings were known to 

have a week acidic character, the docking studies were per-
formed with either their sulfhydryl or hydroxyl form which is 
the conjugate acid forms of deprotonated forms (Fig. 1).

All three heteroaromatic rings were involved in the hydro-
gen bonding interactions with the amino residue of lysine 67 
of Pim-1 kinase. However, it was found that the atoms of het-
eroaromatic rings which were involved in the hydrogen bond-
ing interactions and the binding orientations of compounds 
inside the ATP binding pocket of Pim-1 kinase are different 
each other. The ε-amino residue of lysine 67 made two hydro-
gen bond interactions with two nitrogen atoms in 1,3,4-oxadi-
azole-2(3H)-thione ring of compound 12 while it interacted 
only with a sulfhydryl sulfur atom in 1,3,4-thiadiazole-2(3H)-
thione ring of compound 13. In case of 1,2,4-oxadiazol-5(4H)- 
one ring of compound 17, an oxygen atom of the ring was 
engaged in the hydrogen bonding interaction. These different 

Fig. 1. Equilibria between thione and thiol, and carbonyl and hydroxyl group. Acid-base equilibria of sulfhydryl and hydroxyl group.
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patterns of hydrogen bonding interactions were accompanied 
with the variation of their binding orientation within the ATP 

binding pocket. Compound 13 was oriented toward solvent 
exposed region while compound 12 was located in the inner 

Fig. 3. Suggested binding interactions of compound 12 with Pim-1 kinase (PDB code: 5DWR): (a) compound 12 bound to the ATP binding pock-
et using 3 hydrogen bonding (red dots) and multiple hydrophobic interactions (meshed balls); (b) compound 12 within to the ATP binding pocket 
of Pim-1 kinase.

(a) (b)

Fig. 2. Suggested binding modes of the selected compounds to Pim-1 kinase (PDB code: 5DWR): (a) binding mode of compound 12, two ni-
trogen atoms of oxadiazole ring interact with Lys67; (b) binding mode of compound 13, a sulfur atom of thiol interacts with Lys67; (c) binding 
mode of compound 17, an oxygen atom of oxadiazole ring interacts with Lys67; (d) overlap of compound 12 (brown) with compound 17 (blue).

(a) (b)

(d)(c)
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pocket. Compound 17 went further into the ATP binding pock-
et with the sacrifice of hydrophobic interactions with back-
bone residues of the pocket. The potency differences between 
compounds could be explained in part with these discrepan-
cies.

The more detailed interactions between compound 12 and 
Pim-1 enzyme are shown in Fig. 3. Compound 12 bound to the 
pocket using three hydrogen bonding interactions; two hydro-
gen bonds between oxadiazole and the ε-amino residue of 
Lys67 and one hydrogen bond between the amino group of 
compound 12 with the carboxylate residue of Asp128. Also, it 
made hydrophobic interactions with hydrophobic residues 
such as Ala65, Ile104, Leu120, Leu174, Ile185, Asp186, and 
Phe49.

Conclusion

Compounds with three different heteroaromatic rings were 
synthesized and evaluated for their potential as a new scaffold 
for the development of Pim kinase inhibitors. Compounds con-
taining either 1,2,4-oxadiazol-5(4H)-one, 1,3,4-oxadiazole-
2(3H)-thione or 1,3,4-thiadiazole-2(3H)-thione ring showed 
the reasonable inhibitory activity against all three Pim-1, 2, 3 
kinases. The molecular modeling studies using the Pim-1 
kinase crystal structure showed those three heteroaromatic 
rings were involved in the hydrogen bonding interaction with 
lys67 in the ATP binding pocket. Compound 12, 1,3,4-oxadia-
zole-2(3H)-thione derivative, showed a single digit micromo-
lar IC50 value against Pim-2 while it showed submicromolar 
IC50 values for Pim-1 and Pim-3 kinases. Compound 12 was 
bound to the ATP binding pocket of Pim-1 kinase with both 
hydrogen bonding and hydrophobic interactions. These results 
suggest that 1,3,4-oxadiazole-2(3H)-thione can be a promis-
ing scaffold for the development of Pim kinase inhibitors.
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