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1. Introduction

During this COVID-19 pandemic period, the level of uncer-
tainty has been increasing rapidly so that people have pur-
chased more commodity, security or foreign currency such as 
gold, silver, stock and even cryptocurrency in their financial 
portfolio for risk management. Financial statistics and econo-
metrics research is drawing more attention nowadays. Kim et 
al. [1] studied the relationships of financial markets such as 
cryptocurrency, stock and gold by using copulas. Because of 
relaxing the assumptions of normality, linearity and indepen-
dence, copulas have been popular in the research areas of 
econometrics and finance over the last two decades [2]. Haseb 

[3] mentioned that a copula method is useful to fit the model by 
the maximum likelihood method so that the estimator attains 
efficiency. Especially, a copula-based approach to analyze 
financial time series has been popular because of the following 
attractive properties. First, due to Sklar’s theorem [4], the 

appropriate marginals for the components of a multivariate 
joint distribution can be selected freely and then linked through 
a suitable copula so that the dependence structure may be mod-
eled independently of the marginal distributions. Second, copu-
las are invariant under increasing and continuous transforma-
tions. Third, copulas do not require the marginals to be ellipti-
cally distributed, unlike correlations. Masarotto and Varin [5] 
proposed the Gaussian copula marginal regression (GCMR), 
and Guolo and Varin [6] proposed a beta regression model to 
analyze bounded time series. Guolo and Varin’s method allow
ed the direct interpretation of the regression parameters on the 
original response scale, while properly accounting for the het-
eroscedasticity typical of bounded variables. The serial depen-
dence is modeled by a Gaussian copula, with a correlation 
matrix corresponding to a stationary autoregressive and moving 
average process. With the GCMR method, Kim and Hwang [7] 
and Kim and Hwang [8] proposed the copula directional depen-
dence by asymmetric generalized autoregressive conditional 
heteroscedasticity (GARCH) and stochastic volatility models. 
For the applications of the copula directional dependence 
model to cryptocurrency, Hyun et al. [9] proposed the copula 
directional dependence by neural networks model and applied 
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it to five major cryptocurrencies, daily data consisting of Bit-
coin (BTC), Ethereum (ETH), Litecoin (LTC), Stella (XLM), 
and Ripple (XRP). With the GCMR method, Kim et al. [10] 
investigated a causal interpretation with board characteristics in 
corporate finance, and Kim et al. [11] modeled corporate bond 
yield spreads.

Engle [12] and Bollerslev [13] developed the GARCH model 
which has been the most popular volatility model over the last 
three decades, and the volatility is considered as deterministic 
conditionally on past information. Engle [14] proposed multi-
variate GARCH models for dynamic conditional correlation 

(DCC). Patton [15] also extended the GARCH model to a copu-
la-based GARCH model for financial time series. Using an 
electronic trading platform to trade financial assets including 
common stocks, options, mutual funds, and fixed income 
investments, many consumers have easily traded their common 
stocks every second or minute through an electronic trading 
brokerage account. Engle [16] defined ultra-high-frequency as a 
full record of transactions and their associated characteristics, 
and Alexander [17] described high-frequency data as real-time 
tick data. High-frequency time series are now prevalent in 
financial data. This growth has been driven by the increasing 
availability of such big data, the technological advancements 
that make high-frequency trading strategies possible, and the 
need for practitioners to analyze this data [18]. The develop-
ment of statistical and econometric methods for analyzing high-
frequency financial data has grown exponentially. Hörmann et 
al. [19] and Aue et al. [20] developed the functional autoregres-
sive conditional heteroscedasticity (fARCH) and functional 
GARCH (1,1) models that are empirically relevant for analyz-
ing intraday volatilities of the high-frequency time series of 
tick-by-tick price changes. Yoon et al. [21] and Yoon et al. [22] 
applied the Hörmann et al. [19] fARCH model and the Aue et 
al. [20] fGARCH model to the Korea composite stock price 
index (KOSPI) and Hyundai motor stock high-frequency time 
series. Kim and Jung [24] also studied the relationship between 
oil price and exchange rate using functional data analysis and 
copulas. Yoon et al. [23] reviewed functional principal compo-
nent analysis for volatility from high-frequency time series via 
the R-function. Kim and Hwang [25] also considered copula 
directional dependence with ultra high-frequency stock prices 
by employing the fARCH model, which is a functional statisti-
cal model for time series data proposed by [19], so that Kim 
and Hwang [25] could propose a copula fARCH directional 
dependence for intraday volatility with high-frequency finan-
cial data. Alqawbaa et al. [26] also considered the copula direc-

tional dependence of discrete time series marginals. Kim et al. 

[27] applied the copula directional dependence of discrete time 
series to the patent keyword analysis of the Apple technology 
company. The remainder of this review paper is organized as 
follows: Section 2 describes copula methods, copula dynamic 
conditional correlation (DCC) GARCH and copula directional 
dependence. In Section 3, we show the real data illustration 
with five major US stocks. Section 4 shows the list of copula 
applications in economics and finance. Finally, conclusions are 
presented in Section 5.

2. Copula Method

This section introduces definitions of copulas, the copula 
dynamic (time-varying) correlation coefficient (DCC) GARCH, 
and copula directional dependence. 

2.1 Copula

A copula is a multivariate distribution function defined on 
the unit 
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 A copula is a multivariate distribution function defined on the unit [0,1]�, with uniformly 

distributed marginals. In this paper, we focus on a bivariate (two-dimensional) copula, where 𝑛𝑛 =
2. Sklar [4] shows that any bivariate distribution function, 𝐹𝐹��(𝑥𝑥, 𝑦𝑦), can be represented as a 

function of its marginal distribution of 𝑋𝑋 and 𝑌𝑌, 𝐹𝐹�(𝑥𝑥) and 𝐹𝐹�(𝑦𝑦), by using a two-dimensional 

copula 𝐶𝐶(⋅,⋅). More specifically, the copula may be written as  

 𝐹𝐹��(𝑥𝑥, 𝑦𝑦) = 𝐶𝐶(𝐹𝐹�(𝑥𝑥), 𝐹𝐹�(𝑦𝑦)) = 𝐶𝐶(𝑈𝑈, 𝑉𝑉), 
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𝐹𝐹�(𝑦𝑦), respectively. Note that 𝑈𝑈 and 𝑉𝑉 have uniform distribution 𝑈𝑈(0,1). 
  Definition 2. A 2 -dimensional copula is a function 𝐶𝐶: [0,1]� → [0,1]  with the 

following properties:   

1.  For all (𝑈𝑈�, 𝑈𝑈�) ∈ [0,1]�, 𝐶𝐶(𝑈𝑈�, 𝑈𝑈�) = 0 if at least one coordinate of (𝑈𝑈�, 𝑈𝑈�) is 0;  

2.  𝐶𝐶(𝑈𝑈�, 1) = 𝑈𝑈� and 𝐶𝐶(1, 𝑈𝑈�) = 𝑈𝑈� for all 𝑈𝑈� ∈ [0,1], (𝑖𝑖 = 1,2);  

3.  𝐶𝐶 is 2-increasing, (see [28]).  
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Tse and Tsui [29] proposed a multivariate generalized autoregressive conditional 
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Forecasting for US stock market volatility, Kim et al. [30] proposed a linear time varying 

regression with a DCC-GARCH model for volatility. To improve the linear time varying 

regression with DCC-GARCH model, Kim and Jung [31] proposed a linear time varying 

regression with copula-DCC-GARCH model for volatility. Kim and Jung [32] proposed a 

directional time-varying partial correlation with the Gaussian copula-DCC-GARCH model. For 
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autoregressive conditional heteroscedasticity model with time-
varying correlations.

Forecasting for US stock market volatility, Kim et al. [30] 
proposed a linear time varying regression with a DCC-GARCH 
model for volatility. To improve the linear time varying regres-
sion with DCC-GARCH model, Kim and Jung [31] proposed a 
linear time varying regression with copula-DCC-GARCH 
model for volatility. Kim and Jung [32] proposed a directional 
time-varying partial correlation with the Gaussian copula-
DCC-GARCH model. For neuroscience research, Lee and Kim 

[33] proposed a dynamic functional connectivity analysis of 
resting-state functional magnetic resonance imaging (fMRI) 
based on copula time-varying correlation and showed that the 
copula-DCC-GARCH model is more efficient than the DCC-
GARCH model to detect neuronal activation with fMRI data. 
Lee and Kim [34] also proposed a dynamic functional connec-
tivity analysis based on time-varying partial correlation with a 
copula-DCC-GARCH model. Kim et al. [1] showed that the 
copula-DCC-GARCH model has better efficiency and compu-
tation advantage than the DCC-GARCH model with high vola-
tility financial data.

In this paper, we briefly review the DCC model of Engle 

[14] where the correlation matrix is time varying, and the 
covariance matrix can be decomposed into: 
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 where 𝐃𝐃� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(�ℎ��,�, … , �ℎ��,�)  containing the time-varying standard deviations is 

obtained from GARCH models. The DCC model in [14] has the following structure:   

 𝐑𝐑� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐐𝐐�)��/�𝐐𝐐�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐐𝐐�)��/�, (2) 

  where   

 𝐐𝐐� = 𝐐𝐐� + 𝑎𝑎(𝑧𝑧���𝑧𝑧𝑧��� − 𝐐𝐐�) + 𝑏𝑏(𝐐𝐐��� − 𝐐𝐐�) (3) 

 = (1 − 𝑎𝑎𝑎𝑎𝑎  )𝐐𝐐� + 𝑎𝑎𝑎𝑎���𝑧𝑧𝑧��� + 𝑏𝑏𝑏𝑏���, 
 where 𝑎𝑎, 𝑏𝑏 𝑏 0 such that 𝑎𝑎 + 𝑏𝑏 < 1 to ensure stationarity and positive definiteness of 𝐐𝐐�. 𝐐𝐐�  

is the unconditional variance-covariance matrix of the standardized errors 𝑧𝑧�. 
Bodnar and Hautsch [35] proposed a copula-DCC-GARCH. The time-varying conditional 

correlation in the copula framework with the elliptical copulas is an extension of the DCC model. 

Let 𝐫𝐫� = (𝑟𝑟��,⋯ , 𝑟𝑟��) be a 𝑛𝑛 × 1 vector of asset returns, and it follows a copula GARCH model 

with joint distribution given by:   

 𝐹𝐹(𝐫𝐫�|𝛍𝛍�, 𝐡𝐡�) = 𝐶𝐶(𝐹𝐹�(𝑟𝑟��|𝜇𝜇��, ℎ��),⋯ , 𝐹𝐹�(𝑟𝑟��|𝜇𝜇��, ℎ��)) (4) 

 where 𝐹𝐹� and 𝐶𝐶 are the conditional distribution and the copula function, respectively. 

The conditional mean 𝐸𝐸[𝑟𝑟��|ℑ���] = 𝜇𝜇�� is a linear function of its one-lag past returns, 

and it follows an autoregressive moving average (ARMA) model of order 1 process. The 

conditional variance ℎ�� follows a GARCH(1,1) process based on model selection criteria, such 

as the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). They are 

defined as:   

 𝑟𝑟�� = 𝜇𝜇�� + 𝜃𝜃�(𝑟𝑟���� − 𝜇𝜇��) + 𝜃𝜃�𝜖𝜖����� + 𝜖𝜖��,    𝜖𝜖�� = �ℎ��𝑧𝑧�� (5) 

 ℎ�� = 𝜔𝜔 + 𝛼𝛼�𝜀𝜀����� + 𝛽𝛽𝛽����, (6) 

 where 𝑧𝑧�� are i.i.d. random variables, which conditionally follow Johnson’s reparametrized SU 

,	 (1)
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We can estimate each conditional correlation via the func-
tion cgarchspec command in the R package rmgarch imple-
menting the Gaussian and Student-t copulas.

For the application data analysis in Section 3, we applied 
the copula-DCC-GARCH model to five major S&P 500 stock 
datasets. In particular, we employ a Gaussian copula in order 
to estimate the conditional covariance matrix. The copula-
DCC-GARCH based on the Gaussian copula is called hereaf-
ter “GCTV”.
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2.3 Copula directional dependence

Sungur [37] proposed copula directional dependence with 
an asymmetric variant of the farlie-gumbel-morgenstern copu-
la model developed by [38]. Kim et al. [39] applied the Sun-
gur [37] copula directional dependence to histone gene-gene 
interaction, but there is a lack of fit to detect the directional 
dependence. To rectify this limitation, Kim and Kim [40] pro-
posed directional dependence with the asymmetric multivari-
ate copula functions proposed by [41] and [42], which are new 
families of copulas whose members are asymmetric by multi-
plying two symmetric copulas. Kim and Kim [40] had the 
quasi monte carlo method computation difficulty and model 
selection issue about which copula functions were the better 
fit to data among so many combinations of symmetric copu-
las. To simplify the copula directional dependence method for 
a practical purpose and easy-to-use extension to multivariate 
regression settings, Kim and Hwang [7] proposed a new direc-
tional dependence by using the Gaussian copula beta regres-
sion model. By using the Gaussian copula marginal regression 

(GCMR) of [5], Kim and Hwang [7] estimated the parameter 
of 

combinations of symmetric copulas. To simplify the copula directional dependence method for a 

practical purpose and easy-to-use extension to multivariate regression settings, Kim and Hwang 

[7] proposed a new directional dependence by using the Gaussian copula beta regression model. 

By using the Gaussian copula marginal regression (GCMR) of [5], Kim and Hwang [7] estimated 

the parameter of 𝛽𝛽� for the logit(𝜇𝜇�) = 𝑥𝑥��𝛽𝛽�. The inference is performed through a likelihood 

approach. Computation of the exact likelihood is possible only for continuous responses. 

Otherwise the likelihood function is approximated by importance sampling. Details of likelihood 

computations are discussed in [6]. Kim and Hwang [7] used a beta logit function with one 

continuous covariate by utilizing the Gaussian copula regression model. Before applying a 

Gaussian copula beta regression model with a single continuous covariate to financial data, Kim 

and Hwang [7] preprocessed the financial data exhibiting conditional heteroscedasticity to white 

noise process by employing an asymmetric GARCH (p,q) model to generate the GARCH 

standardized residuals, 𝜖𝜖�� and 𝜖𝜖��. Through doing this procedure, Kim and Hwang [7] tried to 

avoid the serial dependence in the component time series [43]. After making the 𝜖𝜖�� and 𝜖𝜖�� 
from each asymmetric GARCH model, and transforming the two sets of residuals into two uniform 

distributions, 𝑈𝑈� and 𝑉𝑉�, in [0,1], Kim and Hwang [7] performed the directional dependence by 

the Gaussian copula marginal beta regression model. 

Kim and Hwang [8] also proposed a copula directional dependence with the stochastic 

volatility (SV) model. There are two classes of models that are often used to estimate and forecast 

unobserved volatility in asset returns. The first model is the GARCH model by [12] and [13], and 

the second model is the SV model by [44]. The difference between the two most well-known 

models is that the SV model assumes two error processes, while the GARCH model allows for 

only a single error term. It means that the SV model can provide a better in-sample fit to financial 

data, see [45]. On the other hand, the SV model parameters are not always easy to estimate, while 

GARCH parameters can easily be estimated using maximum likelihood. To overcome the 

computation difficulty of the SV model, Kastner [46] developed the “stochvol" R package for 

dealing with stochastic volatility in time series. The “stochvol" R package utilizes Markov Chain 

Monte Carlo (MCMC) samplers to conduct inference by obtaining draws from the posterior 

distribution of parameters and latent variables, which can then be used for predicting future 

volatilities. 
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2.1 Copula 
 

 A copula is a multivariate distribution function defined on the unit [0,1]�, with uniformly 

distributed marginals. In this paper, we focus on a bivariate (two-dimensional) copula, where 𝑛𝑛 =
2. Sklar [4] shows that any bivariate distribution function, 𝐹𝐹��(𝑥𝑥, 𝑦𝑦), can be represented as a 

function of its marginal distribution of 𝑋𝑋 and 𝑌𝑌, 𝐹𝐹�(𝑥𝑥) and 𝐹𝐹�(𝑦𝑦), by using a two-dimensional 

copula 𝐶𝐶(⋅,⋅). More specifically, the copula may be written as  

 𝐹𝐹��(𝑥𝑥, 𝑦𝑦) = 𝐶𝐶(𝐹𝐹�(𝑥𝑥), 𝐹𝐹�(𝑦𝑦)) = 𝐶𝐶(𝑈𝑈, 𝑉𝑉), 
 where 𝑈𝑈  and 𝑉𝑉  are the continuous empirical marginal distribution functions 𝐹𝐹�(𝑥𝑥)  and 

𝐹𝐹�(𝑦𝑦), respectively. Note that 𝑈𝑈 and 𝑉𝑉 have uniform distribution 𝑈𝑈(0,1). 
  Definition 2. A 2 -dimensional copula is a function 𝐶𝐶: [0,1]� → [0,1]  with the 

following properties:   

1.  For all (𝑈𝑈�, 𝑈𝑈�) ∈ [0,1]�, 𝐶𝐶(𝑈𝑈�, 𝑈𝑈�) = 0 if at least one coordinate of (𝑈𝑈�, 𝑈𝑈�) is 0;  

2.  𝐶𝐶(𝑈𝑈�, 1) = 𝑈𝑈� and 𝐶𝐶(1, 𝑈𝑈�) = 𝑈𝑈� for all 𝑈𝑈� ∈ [0,1], (𝑖𝑖 = 1,2);  

3.  𝐶𝐶 is 2-increasing, (see [28]).  

 

2.2 The copula DCC-GARCH 
 

The time-varying correlation of financial data has been more important after the COVID-

19 pandemic than before the COVID-19 pandemic. It can be analyzed by the DCC-GARCH model. 

Tse and Tsui [29] proposed a multivariate generalized autoregressive conditional 

heteroscedasticity model with time-varying correlations. 

Forecasting for US stock market volatility, Kim et al. [30] proposed a linear time varying 

regression with a DCC-GARCH model for volatility. To improve the linear time varying 

regression with DCC-GARCH model, Kim and Jung [31] proposed a linear time varying 

regression with copula-DCC-GARCH model for volatility. Kim and Jung [32] proposed a 

directional time-varying partial correlation with the Gaussian copula-DCC-GARCH model. For 

neuroscience research, Lee and Kim [33] proposed a dynamic functional connectivity analysis of 

resting-state functional magnetic resonance imaging (fMRI) based on copula time-varying 

correlation and showed that the copula-DCC-GARCH model is more efficient than the DCC-
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financial data exhibiting conditional heteroscedasticity to white noise process by employing the 

Bayesian SV model to make two mean standardized residuals, 𝜖𝜖�� and 𝜖𝜖��, from each SV model 

fit by using the R package “stochvol" resid command. These two mean standardized residuals were 

then transformed to two uniform distributions, 𝑈𝑈� and 𝑉𝑉�, in [0,1] to apply the copula direction 

dependence to data. Like [7], Kim and Hwang [8] also assumed that 𝑈𝑈� given 𝑉𝑉� = 𝑣𝑣� follows a 

beta distribution 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜇𝜇�, 𝜅𝜅�) parametrized in terms of the mean parameter 0 < 𝜇𝜇� < 1 and the 

precision parameter 𝜅𝜅� > 0, and denoted by 𝐹𝐹(𝑈𝑈�; 𝜃𝜃) the cumulative distribution function of a 

beta random variable of mean 𝜇𝜇�� = 𝐸𝐸(𝑈𝑈�|𝑣𝑣�). Dependence of the response 𝑈𝑈� on the covariate 

𝑣𝑣� is obtained by assuming a logit model for the mean parameter, logit(𝜇𝜇��) = 𝑥𝑥��𝛽𝛽�, where 𝛽𝛽� 

is a 2-dimensional vector of coefficients.  

 logit(𝜇𝜇��) = log[ ���
�����

] = 𝛽𝛽� + 𝛽𝛽�𝑣𝑣�, where 𝑡𝑡 = 1, … , 𝑛𝑛, (10) 

 where 𝜇𝜇�� = 𝐸𝐸(𝑈𝑈�|𝑣𝑣�) = ���(�������)
�����(�������)  and 𝜅𝜅�� = 1 + exp(𝛽𝛽� + 𝛽𝛽�𝑣𝑣�) with the correlation 

matrix of the errors corresponding to the white noise process.  
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The robustness of the copula directional dependence with 

SV model [8] was checked by two-sided randomization test 
and bootstrap 95% confidence interval.

3. US Stock Real Data Analysis

The COVID-19 pandemic has affected global economics 
severely, but global stock markets including the Korean stock 
market have been bullish since March 19th, 2020. Especially, 
the technology companies’ stocks in the US stock market hit a 
record high price at the end of August, 2020. We chose 
FAANG stocks, which are well-known, and the most valuable 
American technology companies on the S&P 500 : Facebook 

Fig. 1. S&P 500 and FAANG stock prices (period: January 3rd, 2020 to October, 22nd, 2020).
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(FB), Amazon (AMZN), Apple (AAPL), Netflix (NFLX) and 
Alphabet (GOOG) (formerly known as Google). Consumers 
have heavily purchased the five FAANG stocks because 

FAANG stocks are widely known and are good return invest-
ment stocks in US stocks, with a combined market capitaliza-
tion of over $4.1 trillion as of January 2020. A Yahoo finance 

Fig. 2. Gaussian copula dynamic (time varying) correlation coefficients (period: January 3rd, 2020 to October, 22nd, 2020).
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(October 25th, 2020) report commented that the Big Tech 
stocks run-up has cooled somewhat in the months since these 
companies last reported earnings results over the summer in 
the year of 2020. Since July 30, Amazon (AMZN) underper-
formed the broader market, rising 5% versus the S&P 500’s 
6.8% gain. Alphabet (GOOG, GOOGL) tracked about in-line 
with the S&P 500, while Facebook (FB) and Apple (AAPL) 
each gained about 19% over that period.

We want to look at the relationship among FAANG stocks 
during this pandemic period (January 2nd, 2020 to October 
22th, 2020). In Fig. 1, we can see the stock market crash on 
March 18th, 2020 because of COVID-19. Since then, not only 
the US stock market but also world stock markets including 
the Korean stock market have been bullish until now. We are 
skeptical of a US stock market bubble and worry about anoth-
er stock market crash in the near future. Fig. 2 shows the 
Gaussian copula time varying correlations with log returns of 
S&P 500 with Amazon, Apple, Facebook, Google and Netflix. 
We can notice that the Gaussian copula time varying correla-
tions with log returns of S&P 500 with Amazon and Apple 
have a high correlation in October, 2020. But recently, the 
Gaussian copula time varying correlations with log returns of 
S&P 500 with Facebook, Alphabet (GOOG, Google) and Net-
flix have been lower in October, 2020. These FAANG stocks 
have two different pattern groups against S&P 500 because 
the US Justice Department launched a landmark antitrust civil 
action against Alphabet (GOOG) and Facebook recently, and 
these two companies, CEOs testified before the US Senate 
commerce committee on October 28th, 2020. We also per-
formed the [8] copula directional dependence with SV model 
with these log returns of S&P 500 with four big tech compa-
nies (Amazon, Apple, Facebook, Google). Fig. 3 shows that 
the four big tech companies give a higher directional depen-
dence to S&P 500 in terms of the log returns of market and 
stock prices. We have two interesting findings from the US 
stock market during this COVID-19 pandemic period. First, 
the log-returns of Amazon stock affected the other three 
stocks’ log-returns (Apple, Facebook, Google) more than the 
other direction. Second, the log-returns of Google stock were 
more affected by other three stocks’ log-returns (Amazon, 
Apple, Facebook) than the other direction. By using the Kim 
and Hwang [8] copula directional dependence by SV model, 
we can understand how much US major tech stocks are relat-
ed to each other, which can give some guidelines for consum-
ers deciding which stock they need to buy first under a high 
volatility situation. If we generalize the [8] copula directional 

dependence by SV model to financial markets, then we can 
have a clear map about how the financial markets are related 
to each other. Readers can download the R code for the copu-
la data analysis from the following website: http://cda.morris.
umn.edu/~jongmink/research/QBIO.txt and can reproduce 
the parameter estimates for the copula data analysis easily.

4. Copula Methods in Economics and Finance

We have reorganized copula methods in economics and 
finance based on two previous copula review papers ( [48] and 

[49]). Since Patton [15] proposed a copula GARCH model 
based on the Engle [12] ARCH model and Bollerslev [13] 
GARCH model, numerous applications of copula theory in 
financial econometrics have been published in books and 
journals from economics, finance and statistics. Patton [48] 
reviewed the applications of copula methods for economic 
time series and classified the copula applications into five cat-
egories, which consisted of risk management, derivative con-
tracts, portfolio decision problems, time-varying copula mod-
els, and high-dimension copula applications. Oh and Patton 

[50] modeled dependence in high dimensions with factor cop-
ulas of economic variables based on a latent factor structure 
to daily returns on all 100 constituents of the S&P 100 index 
and showed that factor copula models provide superior esti-
mates of some measures of systemic risk. Other applications 
include using copulas to model dynamics in a panel of earn-
ings data by [51] and using copulas to model the (uncorrelat-
ed) residuals of a multivariate GARCH model by [52]. Kim 
and Jung [53] applied copulas to dependence structure 

Fig. 3. Copula directional dependence of the log-returns of stock 
prices (period: January 3rd, 2020 to October, 22nd, 2020).
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between oil prices, exchange rates, and interest rates. Liu et 
al. [54] investigated bank non-performing loans and govern-
ment debt distress by copula tail dependence. Kim et al. [55] 
developed copula nonlinear Granger causality. But copula 
researchers knew that there was a limitation to extend para-
metric bivariate extreme value copula families to higher 
dimensions. Numerous copula researchers including Joe [56], 
Bedford and Cooke [57] and Kurowicka and Cooke [58] pro-
posed different versions of copula methods to solve this limi-
tation. Based on the previous researches of multivariate copu-
la methods, Aas et al. [59] reorganized and proposed pair-cop-
ula constructions (PCC), which can construct the multivariate 
joint distribution by copula function. Since then, the applica-
tion of PCC has been popular in financial economics. Berg 
and Aas [60] proposed models for the construction of multi-
variate dependence. Czado [61] proposed PCC of multivariate 
copulas. Min and Czado [62] proposed Bayesian inference for 
multivariate copulas using PCC. Smith et al. [63] modeled 
longitudinal data using a pair-copula decomposition of serial 
dependence. Czado et al. [64] proposed a maximum likelihood 
estimation of mixed C-Vines with application to exchange 
rates. Brechmann et al. [65] proposed truncated regular vines 

(an extension of PCC with vine dependence structure) in high 
dimensions with an application to financial data. Brechmann 
and Schepsmeier [66] developed the R-package CDVine, 
which is dependence modeling with C- and D-vine copulas. 
Pourkhandali et al. [67] also proposed to measure systemic 
risk using vine Copula.

Aas et al. [59] is one of the most highly cited papers in copu-
la research area and it was cited 1,606 times on Google Scholar 
by October 31st, 2020. Aas [49] reviewed some of the PCC 
financial applications of market risk, capital asset pricing, cred-
it risk, operational risk, liquidity risk, systemic risk, portfolio 
optimization, and option pricing. With a copula quantile meth-
od, Kim et al. [68] and Kim et al. [69] investigated the depen-
dence structure of financial assets and the changing dynamics 
of board independence in corporate finance. For a better under-
standing of the vine copula, we recommend the vine copula 
website created by Professor Claudia Czado’s research group 
Mathematical Statistics in the Department of Mathematics at 
the Technical University of Munich; https://www.groups.
ma.tum.de/en/statistics/research/vine-copula-models/. The web-
site consists of vine copula models research publications and 
open source implementations in R, C++ and Python, which are 
for vine copulas with time varying parameters, regime switch-
ing vine models, non-parametric vine pair copulas, Non-Gauss-

ian directed acyclic graphical (DAG) models based on PCC, 
discrete vine copulas, truncated and simplified R-vines spatial 
vines, and copula discriminant analysis. The website is a useful 
site for researchers who are interested in the application of cop-
ula methods.

5. Conclusion

In this paper, we reviewed the copula-DCC-GARCH model, 
copula directional dependence and copula applications in eco-
nomics and finance. To illustrate the copula-DCC-GARCH and 
copula directional dependence by SV model, we used US big 
tech FAANG stocks to show the time varying correlations 
between S&P 500 and FAANG stocks, and we drew the direc-
tional dependence map among US major stocks’ log-returns. 
We also explained how much the copula time series models 
have been useful in economics and finance in the last two 
decades. Nowadays, uncertainty is a major research topic in 
economics, finance and many other areas. We can say that the 
copula may be a good statistical method for measuring the 
uncertainty with financial ultra high-frequency data.
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