
QBS
Vol. 39, No. 2, pp. 137-145 (2020)
https://doi.org/10.22283/qbs.2020.39.2.137
pISSN 2288-1344   eISSN 2508-7185   Original Article

─ 137 ─

1. Introduction

In many areas of study, modern scientific researchers try to 
develop and use computer simulator instead of the physical 
experiments which are sometimes too expensive or impossi­
ble. However, there are usually unknown parameters similar 
to the gravitational constant. One of the classic methods of 
adjusting unknown universal constants in computer code is 
the nonlinear least squares estimation (NLSE), which mini­
mizes the sum of the squared differences between the res­

ponses of computer simulations and the experimental obser­
vations. However, if the computer code is time-consuming to 
run, the NLSE becomes too expensive in terms of time. In 
these cases, one can use a statistical model to tune the param­
eters in the computer simulator such that the model can 
explain the physical experimental data very well. This proce­
dure is called “code tuning” or “calibration” [1-4].

We define the calibration as the process of improving the 
agreement of a set of code calculations with respect to a chosen 
and fixed set of experimental data via adjustment of the param­
eters implemented in the simulator [5]. Han et al. [3] differenti­
ated between tuning parameter and calibration parameter. In 
this study, however, the two parameters are treated as the same. 
We will be lazy by using those two words (calibration and code 
tuning) interchangeably [6].
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Cox et al. [1] studied an approximated NLSE (ALS) for 
code-tuning, in which they employed the Gaussian process 

(GP) as a metamodel of complex computer code. That is, the 
ALS first fits the GP model to the computer data and then it 
treats the fitted GP model as if it were true simulation code, 
which makes it computationally feasible. The GP has been 
successfully used to analyze computer experiments [7-9]. We 
adopt the GP model as a metamodel of computer simulation 
code. In this report, a metamodel or an emulator or a surro­
gate or a GP model are used as a same meaning.

Our work focuses on calibration in frequentist fashion [10, 
11], rather than a Bayesian one [2,12,13]. Kennedy and O’Ha­
gan [2] introduced a Bayesian calibration in which a bias cor­
rection is done by the GP. Recent contribution to this topic 
includes efficient designs for calibration [13], computer experi­
ments for big data [10], multi-fidelity [12], sequential tuning 
[14], identifiability [15,16], and surrogate modelling [11,17,18].

This paper is organized as follows. Section 2 describes a GP 
for computer experiments. The ALS approach based on four 
models and its ensemble are introduced in Section 3. In Sec­
tion 4, a test function study is presented. An iterative version 
of ALS method, a generalized ALS method, and likelihood-
based approach are reviewed in Section 5. Summary and dis­
cussion are given in Section 6. Some contents of this study 
are inevitably similar to those of References [1,4,6] because 
the problem setting of these studies are same to this report.

2. Gaussian Process Model for  
Computer Experiments

In this section, we describe the statistical model for the 
computer simulation data based on the Gaussian process. In 
many cases, computer simulation code is deterministic. For 
this reason, Sacks et al. [7] proposed adopting the Gaussian 
process model (GPM) for computer experiments. The expres­
sion of the GP is as follows: 
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where {fi
 (·)} is a set of known functions, β is a vector of 

unknown regression coefficients, and Z(·) is the Gaussian 
process with mean zero and covariance σ 2Z       R(t). Here, the first 
term represents a linear regression model, and the second 
term represents the departure from the assumed linear model, 
which allows us to interpolate between the observed sites. For 
ti = {ti1,...tid} and tj = {tj1,...tjd}, the covariance between Z(ti) 
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𝑍𝑍(⋅)  is the Gaussian process with mean zero and covariance 𝜎𝜎��𝑅𝑅(𝑡𝑡) . Here, the first term 

represents a linear regression model, and the second term represents the departure from the 

assumed linear model, which allows us to interpolate between the observed sites. For 𝑡𝑡� =
{𝑡𝑡��, . . . 𝑡𝑡��} and 𝑡𝑡� = {𝑡𝑡��, . . . 𝑡𝑡��}, the covariance between 𝑍𝑍(𝑡𝑡�) and 𝑍𝑍(𝑡𝑡�) is given by  

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡�, 𝑡𝑡�) =   𝑉𝑉(𝑡𝑡�, 𝑡𝑡�) =   𝜎𝜎��𝑅𝑅(𝑡𝑡�, 𝑡𝑡�), (2) 

where 𝜎𝜎�� is the process variance of 𝑍𝑍(⋅) and 𝑅𝑅(𝑡𝑡�, 𝑡𝑡�) is a correlation function. Our choice is 

obtained from the Gaussian correlation family denoted by [8];  

 𝑅𝑅(𝑡𝑡�, 𝑡𝑡�) = exp�−∑���� 𝜃𝜃�(𝑡𝑡�� − 𝑡𝑡��)��, (3) 

where 𝜃𝜃��s are non-negative parameters. We define 𝑣𝑣𝑣(𝑡𝑡�) and 𝑓𝑓𝑓(𝑡𝑡�) by  

 𝑣𝑣𝑣(𝑡𝑡�) = [𝑉𝑉(𝑡𝑡�, 𝑡𝑡�), . . . , 𝑉𝑉(𝑡𝑡�, 𝑡𝑡�)],   𝑓𝑓𝑓(𝑡𝑡�) = [𝑓𝑓�(𝑡𝑡�), . . . , 𝑓𝑓�(𝑡𝑡�)]. (4) 

Here, 𝑣𝑣𝑣(𝑡𝑡�) is a correlation vector between observed sites and a prediction site 𝑡𝑡�, and 𝑓𝑓𝑓(𝑡𝑡�) 

is a design vector of 𝑡𝑡�. 
Here, v’(t0) is a correlation vector between observed sites and 
a prediction site t0, and f ’  (t0) is a design vector of t0.

If the correlation function R  (·,·) is known, the best linear 
unbiased predictor (BLUP) of Y  (t0), given observation y, is 

If the correlation function 𝑅𝑅(⋅,⋅) is known, the best linear unbiased predictor (BLUP) of 

𝑌𝑌(𝑡𝑡�), given observation y, is  

 𝑌𝑌�(𝑡𝑡�) = [𝑣𝑣𝑣(𝑡𝑡�), 𝑓𝑓𝑓(𝑡𝑡�)] �
𝑉𝑉 𝑉𝑉
𝐹𝐹𝐹 0 �

��
�
𝑦𝑦
0 � = 𝑓𝑓𝑓(𝑡𝑡�)𝛽𝛽� + 𝑣𝑣𝑣(𝑡𝑡�)𝑉𝑉��(𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦�), (5) 

where 𝐹𝐹 = [𝑓𝑓�(𝑡𝑡�)]�����,�����  is an 𝑛𝑛 × 𝑝𝑝  design matrix of observed sites and 𝛽𝛽�  is the 

generalized least squares estimator of 𝛽𝛽; 𝛽𝛽� = (𝐹𝐹𝐹𝐹𝐹��𝐹𝐹)��𝐹𝐹𝐹𝐹𝐹��𝑦𝑦. 𝑉𝑉 is usually unknown. We 

thus estimate the hyper-parameters in 𝑉𝑉 via the maximum likelihood estimation (MLE) from the 

data collected at the deisgn sites. Then it are plugged into (5), which makes (5) become the so-

called empirical BLUP of 𝑌𝑌(𝑡𝑡�)  [8] or the Kriging in geostatistics. We used the package 

"DiceKriging" [20] of the R program. 

The prediction model can be determined differently according to a combination of 𝛽𝛽𝛽𝛽𝛽 

and 𝜃𝜃𝜃𝜃𝜃 in (1) and (3). Among many possible combinations of those 𝛽𝛽’s and 𝜃𝜃’s, we consider 

the following four models as basic ones: 

  

    𝛽𝛽� + common 𝜃𝜃�   

    𝛽𝛽� + all different 𝜃𝜃’s   

    first order liner model + common 𝜃𝜃�   

    first order liner model + all different 𝜃𝜃’s.   

 

Here the “common 𝜃𝜃" means that 𝑑𝑑 number of 𝜃𝜃’s are forced to be a common 𝜃𝜃� such that 

𝜃𝜃� = 𝜃𝜃� = ⋯ = 𝜃𝜃�:= 𝜃𝜃�. These four models are employed in this paper. Of course, other models 

can be considered, and the models based on variable selection algorithm are also possible [21, 22, 

23]. We refer the readers to [8] and [9] for more information on GPM and its applications to the 

design and analysis of computer experiments. 

 

3. Approximated Nonlinear Least Squares 
 

We briefly describe the approximated nonlinear least squares (ALS) method proposed by 

[1]. The following notations for the computer data and for the real experimental data are used: 
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can be considered, and the models based on variable selection algorithm are also possible [21, 22, 

23]. We refer the readers to [8] and [9] for more information on GPM and its applications to the 

design and analysis of computer experiments. 
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We briefly describe the approximated nonlinear least squares (ALS) method proposed by 
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and 𝜃𝜃𝜃𝜃𝜃 in (1) and (3). Among many possible combinations of those 𝛽𝛽’s and 𝜃𝜃’s, we consider 
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3. Approximated Nonlinear Least Squares 
 

We briefly describe the approximated nonlinear least squares (ALS) method proposed by 

[1]. The following notations for the computer data and for the real experimental data are used: 

. V  is usually unknown. We 
thus estimate the hyper-parameters in V via the maximum 
likelihood estimation (MLE) from the data collected at the 
deisgn sites. Then it are plugged into (5), which makes (5) 
become the so-called empirical BLUP of Y  (t0) [8] or the Krig­
ing in geostatistics. We used the package “DiceKriging” [20] 
of the R program.

The prediction model can be determined differently accord­
ing to a combination of β’s and θ’s in (1) and (3). Among 
many possible combinations of those β’s and θ’s, we consider 
the following four models as basic ones:

β0 + common θc 
β0 + all different θ’s 
first order liner model + common θc 
first order liner model + all different θ’s. 

Here the “common θ” means that d number of θ’s are forced 
to be a common θc such that θ1 =θ2 = … =θd: =θc. These 
four models are employed in this paper. Of course, other mod­
els can be considered, and the models based on variable selec­
tion algorithm are also possible [21-23]. We refer the readers 
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to [8] and [9] for more information on GPM and its applica­
tions to the design and analysis of computer experiments.

3. Approximated Nonlinear Least Squares

We briefly describe the approximated nonlinear least squares 

(ALS) method proposed by [1]. The following notations for the 
computer data and for the real experimental data are used:

d: dimension of input variables t = (c, x) of computer code
q: dimension of unknown parameters c
c: unknown parameters to be estimated (q dimensional)
cS: input variables of computer model corresponding to 

unknown parameters c  (q dimensional)
nS, nE: number of observations in computer simulations and 

in real experiments
xS , xE: independent variables in computer model (d -q 

dimensional) and in real experiments (d-q dimensional)
Y  (c, x), yE: computer response for input variables (c, x) and 

observations in real experiments.

Here, the subscripts S and E represent the computer simulation 
and real experiment, respectively. If the computer simulation 
code explains the real experiment data well, we can approxi­
mate yE using the following model: 

   𝑑𝑑: dimension of input variables 𝑡𝑡 = (𝑐𝑐, 𝑥𝑥) of computer code 

   𝑞𝑞: dimension of unknown parameters 𝑐𝑐 

   𝑐𝑐: unknown parameters to be estimated  (𝑞𝑞 dimensional) 

   𝑐𝑐�: input variables of computer model corresponding to unknown parameters 𝑐𝑐 (𝑞𝑞 dimensional) 

   𝑛𝑛�, 𝑛𝑛� : number of observations in computer simulations and in real experiments 

   𝑥𝑥�, 𝑥𝑥�: independent variables in computer model (𝑑𝑑-𝑞𝑞 dimensional) and in real experiments (𝑑𝑑-

𝑞𝑞 dimensional) 

   𝑌𝑌(𝑐𝑐, 𝑥𝑥), 𝑦𝑦�: computer response for input variables (𝑐𝑐, 𝑥𝑥) and observations in real experiments. 

 

Here, the subscripts 𝑆𝑆  and 𝐸𝐸  represent the computer simulation and real experiment, 

respectively. If the computer simulation code explains the real experiment data well, we can 

approximate 𝑦𝑦� using the following model:  

 𝑦𝑦� = 𝑌𝑌(𝑐𝑐, 𝑥𝑥�) + 𝑒𝑒, (6) 

where 𝑒𝑒  is assumed to be independent and identically distributed 𝑁𝑁(0, 𝜎𝜎��𝐼𝐼), and 𝜎𝜎��  is the 

variance of real experiments. 

When the computer code is very time-consuming to execute, it is almost impossible in 

terms of time to optimize some quantity directly from the code. For this case, the ALS uses a GP 

model as a statistical metamodel or a surrogate of computer code. The ALS first fits the GP model 

for the computer data by estimating the GP parameters using the MLE. Then, it treats the fitted 

model as if it were true computer code. The ALS finds 𝑐𝑐  that minimizes the following 

approximated residual sum of squares (ARSS) [1];  

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐) = ∑��
��� �𝑦𝑦�,� − 𝑌𝑌�(𝑐𝑐, 𝑥𝑥�,�)��, (7) 

where 𝑌𝑌�(𝑐𝑐, 𝑥𝑥�) is the EBLUP of 𝑌𝑌(𝑥𝑥�), as in Eq (5). 

The advantage of this method is that it does not require any additional execution of the 

computer code to evaluate 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐) after the prediction model is built from a computer data set 

[1]. Because no explicit solution is available to minimize ARSS(c), we use the quasi-Newton 

method in "optim" package of R program. 

The ALS estimate, 𝑐𝑐, is obtained for each of the four models (Model 1 to Model 4). An 

ensemble estimator of 𝑐𝑐 is a simple average of the 𝑐𝑐’s which are obtained from the ALS based 

on each of the four models. We expect that this simple ensemble estimator has less variance than 

� (6)

where e is assumed to be independent and identically distrib­
uted 

   𝑑𝑑: dimension of input variables 𝑡𝑡 = (𝑐𝑐, 𝑥𝑥) of computer code 

   𝑞𝑞: dimension of unknown parameters 𝑐𝑐 

   𝑐𝑐: unknown parameters to be estimated  (𝑞𝑞 dimensional) 

   𝑐𝑐�: input variables of computer model corresponding to unknown parameters 𝑐𝑐 (𝑞𝑞 dimensional) 
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5.2 Iterative version of ALS 
 

Another defect of the ALS is that the surrogate GP is built only once based on the computer 

data and is not updated thereafter. To solve this difficulty, Seo et al.[4] introduced an iterative 

version of the ALS. They call it ‘max-min’ algorithm. The steps of this algorithm are given in the 

following; 

  

•  Step 1: Build a metamodel using MLE for the computer simulation data only.  

•  Step 2: finds 𝑐𝑐, which minimizes the ARSS(c) in eq (7) with the estimates from Step 1.  

•  Step 3: Build a metamodel using MLE for the combinded computer data and real 

experiment data with the fixed parameter 𝑐𝑐 as the obtained value in the previous step.  

•  Step 4: finds 𝑐𝑐 which minimizes the ARSS(c) in eq (7) with the estimates from Step 3.  

•  Step 5: Repeat Step 3 - Step 4 until the stopping rule is satisfied.  

 

In each iteration of Steps 3 and 4, the combined data and the parameters in a GP model are 

updated, so we expect it positively affect the estimation of 𝑐𝑐. The advantage of the max-min 

algorithm is that both of computer data and real experiment data are employed for building a GP 

model. Thus, the uncertainty in the approximation Y using the metamodel gets smaller than those 

of the ALS, because the ALS builds a surrogate using computer data only. This method improves 

the accuracy of calibration and obtains more stable result [4]. As a modification of the above 

algorithm, one can use the combined data in Steps 1 and 2, which may improve the performance. 
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Given a computer code and a Gaussian process model for 𝑦𝑦, an unified statistical approach 
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estimated by the maximum likelihood method. We refer to this method as the full MLE [1]. It is 
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The Latin-hypercube designs [24-26] were used to select an 
independent variable for real experiment (xE) and an input 
variable for the computer simulations (cS, xS). To address 
uncertainty in the estimation and the design, 30 different Lat­
in-hypercube designs were employed for each test function. 
For a comparison analysis, we provide box-plots of 30 differ­
ent estimates. The Euclidean distance to the true values from 
the estimates is used to evaluate the accuracy of the methods.

Figs. 1-3 show the results of the performance comparison 
for each test function. The results show that the ensemble 
method works better than the ALS based on each of four mod­
els, for all three test functions. In test function 1, all ALS 
methods bsed on four models work well in the sense of narrow 
boxes in the plot, whereas the wiskers of Models 3 and 4 are 
long. The ensemble method has narrow box and whisker, simi­
lar to the best one (Model 1). In test function 2, the perfor­
mance of ALS method for c2 and c3 are not good, whereas it is 
good for c1. The ensemble method still works better than ALS 
based on each of four models. This findings for test function 2 
are also applied similarly to test function 3. In test functions 2 
and 3, it seems that Models 3 and 4 work better than Models 1 
and 2, respectively, based on the Euclidean distance. It needs 
further study for justification and generalization.

5. More Calibration Methods

5.1 A generalized ALS

The differences between the observations of experiments 
and the responses of computer simulations often do not have 
equal variance or correlated. In that case, a generalized least 
squares method instead of the ordinary least squares method 
is usually employed in a linear model theory. Moreover, one 
potential drawback of the ALS method is that it does not 
account for uncertainty in the approximation of the computer 
response by the fitted GP model. To address the above two 
problems in the calibration study, Lee and Park [6] considered 
a generalized approximated nonlinear least squares estimation 

(GALS) method that takes into account the uncertainty due to 
the approximation and the covariance matrix of residuals.

The GALS method finds c which minimizes the following 
generalized ARSS (

computer data using each of the four models. 

 

5.2 Iterative version of ALS 
 

Another defect of the ALS is that the surrogate GP is built only once based on the computer 

data and is not updated thereafter. To solve this difficulty, Seo et al.[4] introduced an iterative 

version of the ALS. They call it ‘max-min’ algorithm. The steps of this algorithm are given in the 

following; 

  

•  Step 1: Build a metamodel using MLE for the computer simulation data only.  
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•  Step 5: Repeat Step 3 - Step 4 until the stopping rule is satisfied.  

 

In each iteration of Steps 3 and 4, the combined data and the parameters in a GP model are 

updated, so we expect it positively affect the estimation of 𝑐𝑐. The advantage of the max-min 

algorithm is that both of computer data and real experiment data are employed for building a GP 

model. Thus, the uncertainty in the approximation Y using the metamodel gets smaller than those 

of the ALS, because the ALS builds a surrogate using computer data only. This method improves 

the accuracy of calibration and obtains more stable result [4]. As a modification of the above 

algorithm, one can use the combined data in Steps 1 and 2, which may improve the performance. 

 

5.3 Likelihood-based tuning methods 
 

Given a computer code and a Gaussian process model for 𝑦𝑦, an unified statistical approach 

is available. We have the likelihood for all the parameters, including the universal constants 𝝉𝝉; the 

error term parameter 𝜎𝜎��� 2; and the GP parameters 𝛽𝛽, 𝜃𝜃, and 𝜎𝜎�. Thus, all parameters can be 

estimated by the maximum likelihood method. We refer to this method as the full MLE [1]. It is 
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Fig. 1. Boxplots of the estimated calibration parameters which were estimated by the approximated nonlinear least squares methods based on 
each of four models and ensemble method, and boxplots of the Euclidean distances between true values and estimated values, for test function 1. 
The dashed horizontal line stands for the true value for each calibration parameter. 
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Through calculations presented in [6], K is written as fol­
lows: 
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surrogate using computer data only. This method improves 
the accuracy of calibration and obtains more stable result [4]. 
As a modification of the above algorithm, one can use the 
combined data in Steps 1 and 2, which may improve the per­
formance.
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can simultaneously utilize both computer and experimental 
data to estimate τ, whereas the ALS uses computer data only. 
The SMLE is found to be better than the full MLE [1]. These 
likelihood-based approaches enrich the tuning methods. A 
comparison of the max-min with the SMLE is provided in [4].

6. Summary and Discussion

To address potential drwabacks of the approximated nonlin­
ear least squares (ALS) calibration method using a Gaussian 
process surrogate to complex simulator, we considered a sim­
ple ensemble method which averages the respective estimates 
from four different models. Three test functions in different 
conditions are examined for a comparative analysis of the 
four models and the proposed method. Based on the test func­
tion study, we found that the ensemble method based on four 
models provided better results than the ALS based on each 
model.

As a second part of this paper, we reviewed some calibra­
tion methods including a generalized ALS, an iterative ver­
sion of ALS, and likelihood-based method. The generalized 
ALS constructs the inverse of the covariance matrix of residu­
als and minimizes the generalized squared residuals with 
respect to the tuning parameters [6]. In an iterative version of 
ALS, the parameters are re-estimated and updated by the 
maximum likelihood estimation (MLE) and the ALS repeated­
ly until convergence [4]. In the likelihood-based method, the 
tuning parameters are estimated by the MLE method using 
both computer and experimental data together.

As an ensemble, an weighted average other than the simple 
average of ĉ would be better for the unbiasedness and effi­
ciency. Then, the next issue is how to assign the weights for 
each model. We have not tried this approach in this study, but 
it is the future task.

The estimates ĉ may vary according to the selected surro­
gate; hence, the model selection is very important in calibra­
tion. In this study, we only use the simple four models (Model1 
to Model 4) for the test function study. If the best model sele­
cted by the variable selection method was used, the result 
might be better. To circumbent this problem, we considered 
an ensemble estimator in this paper, which showed better acc­
uracy and stability than the estimators based on each model.

The disadvantage of the GALS and the max-min algorithm 
is that those are computationally more complex than the ALS, 
because the GALS and the max-min need to optimize more 
complex functions and needs to estimate more parameters for 
the covariance matrix K. Nonetheless, the GALS and the max-
min may provide a better calibration as well as a better emula­
tor of the computer code than the ALS method can do. Likeli­
hood-based methods can be extended to an iterative version. 
One extension is the method using EM (expectation and maxi­
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mization) algorithm [27].
In the literature, calibration is often performed within a 

framework where the simulation predictions suffer from a 
systematic bias or discrepancy for any value of parameters. 
This reflects the view that the mathematical equations under­
lying the code should not be considered as a perfect model of 
the real world [2,19,28]. Even if this framework is more real­
istic, it is outside the scope of this paper. Thus our presenta­
tion is focused on a statistical model which does not include 
the code discrepancy [1]. However, it would be possible to 
generalize our framework to the inexact simulation model [6].

There are basic limitations with calibrating simulator to real-
world data regarding the experimental design. We found that 
the performance of calibrations is significantly dependent on 
the designs for both the computer experiments and the physi­
cal experiments. Some authors including [29,30] explored this 
topic. We agree that a sequential approach is practically useful, 
as in [17,14,13]. Further research on relevant designs under 
sequential calibration methods would be helpful [4].
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