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ABSTRACT

Gradual change-point is an important topic in statistical studies. However, due to the complexity of gradual change-

points, they are more difficult than other types of change-points and have scarcely been discussed in the literature. Thus,

we highlight that, at an unknown time, a continuous type of change in an autocorrelated coefficient exists. Using

Bayesian and maximum likelihood estimation methods, we tested the existence of trends in an autoregressive coefficient

with a linear change. Simulation results, which support the Bayesian estimation method and compare it with the

maximum likelihood estimation method, are reported for illustration.
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1. Introduction

Csorg6 and Horvath [1] studied limit theories of abrupt
change-points, as did Chen and Gupta [2] and Liu and Ha [3].
In addition, Lee et al. [4] studied the change point problems of
parameters using CUSUM statistics. However, few studies
have been conducted on gradual change-point problems,
because of their complexity. Huskova [5] proposed a least
square estimation method to study asymptotic properties in
location parameter models, and Gupta and Ramanayake [6]
discussed gradual change-point problems of exponential dis-
tribution parameters with a linear trend, and also discussed
statistical properties of test statistics based on a generalized
likelihood ratio test. In addition, Wang [7] detected the gradu-
al change point of normal distribution parameters and provid-
ed a mathematical definition of gradual change points. Fur-
thermore, Liu [8] developed a nonparametric method based on

area under curve (AUC) to discuss gradual change points.
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In this paper, we partly reference methods based on Liu [9].
Here we consider the gradual change-point problems for the

autocorrelated coefficient ¢o in AR(1) model

X = poXeoq + €, t =1, .1, €Y

where |¢ol <1, € is an independent identically distributed
random Gaussian errors and it satisfies

E(e)) = 0,Var(e) = o2

Now we will derive some statistics to test if the ¢, is sub-
ject to a linear trend change at an unknown period of time.

The hypothesis can be described as follows
Hy: Xy = poXyq +€,t=1,--,n,

H .{Xt = PoXy_q + €t =2,k
VX = (o + 8t —k)DXeq tent =k+ 1,1

where the assumption for €; is the same whether autoregres-
sive coefficients of AR(1) models change, and k € (2,n — 1)
is an unknown time called a gradual change-point. If null
hypothesis H, holds true, there is no change-point, but if the
alternative hypothesis H; holds true, there is a gradual change-
point in AR(1) models.
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2. Bayesian Estimation of Parameters

In Section 1, we obtained the hypothesis problems as fol-

lows:

Hy: Xy = ¢poXyq +€,t=1,-

. _{X[ = poXe1 + €t =2,k
VX, =(po +6(t—k)DXe1 +e,t=k+1,-,n
For given X,, we set @ = (k, ¢, 8,027, the hypothesis prob-
lems then have a likelihood function as follows:

L=(2r0?)"7 -exp{~s5 [Shey (K, — poXer)?

+ T eas (X — (o + 6(t = k) Xer)?1}

_n-1
= (2no?) "z -exp {—% E, (Xe — doXeq)?

=28 X s (€= )X, = PoXee)X,oal)
exp{—— 8% Yt (t _k)Zth—l}

_n-1 1
= (2no?) 2z -exp {—2—' [Xhes (Xp — PoXeo1)?

o2

= 26T (t = IOXXeq + 26600 Biiers (8 — K)XZ, 1}

-exp{ 202 ke (E— )Zth—l}'

We assume the prior distributions of ¢o, §, ¢ are all uniform
distribution and we take the prior distribution 7(k) of k from
Yang [10], viz., n(k) «< k(n — k), k = 2,---,n. Additionally,
prior distributions of all parameters are independent of each
other. The notations that appear in the text and the appendix

are the same unless otherwise noted.

Let
My =31, (Xe — dpoXi-1)%,
My = =26 ¥icprr (6 = k)Xt — PoXe-1) X1,
= 26 YT sy (t = )X KXoy,
My =280 Xioprr (t — K)XE 1, Ms = Xi_yeyq (t—K)?XE o,

then M, = M5 + M,.

As proposition of Bayes distribution, the joint posterior dis-

tribution of all parameters is given by

n(0]X) oL-m(k)/o?

Tl.'(k)

n—1
= (2no?)" 2z exp{ s [My + Mz + M, + Ms]} ot

Then the kernel of change point k is

mk | %) o [ [7° [*° (2m0?) T

cexp{— =5+ [My + My + My + M1} - "2 do?depods
n-3
1 22 (Czdz_b )2 T2
x (aya, — ¢5) 2 ez—a—i—ic% r(k),
az=g;

where

n n
_ 2 _ § 2y2
a; = Xiva; = (t—k)*Xiy,
t=2 t=k+1

n n
=) XK =) (=KX,
t=k+1 t=k+1

n n
_ _ 2
d; = X Xi 1,60 = Xt
t=2 t=2

As k is discrete, its posterior distribution is

zdz_b )2
a3
(azaz—c3)” 2 62___7% (k)
az——=
(k| x¢) = = ——, 2<k<n
2
Yie, (@1a2—c3)” 2 ez———ic2 (L)

az—ﬁ

Then the Bayesian estimator k of change-point k is k =

argmaxmn(k | x;).
2gksn

Similarly, as properties of t-distribution and I'-distribution,
we can obtain the kernels of conditional posterior distribu-

tions of parameters o2, § and ¢, respectively:

n-3
Czdz_bz)z z
m(o? | %) « Sch (02 il
az—a—zl
( d2 (Czdz bz)z\
ep— a1 752
az— a1
exXp ——————— (k| x),
n-3
B @ Eeny|
T8 ) o T4 (cy+ My + My) 7 (= D e, - B e
1 a,— ai
-k |x¢),
where

[521; 1 (E=R)XE 1 =Sy XeXe— 1] +y, Xt

C1 =
i X

=—a;- bl2 +Z1t1=2 thr
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n-1 ¢ )2 )
0t2 —
w(o o Y, (- =P g, -
k=2
n-3
g @2opyel?
2 a; 2
e, — > a, “n(k |x.).
a, cZ
a, — =
a;

Correspondingly, the posterior distributions of parameters are:

az
e 4 =
27 a; 2

- -3 2~
n(a? | %) = XiZ; IGa(az;nT,f) (k| xp),

(8| xe) =

ﬂ—bz dz (ﬂ_ 2
it &n=3,—"—, (e, 2 ——1—)/(n~- 3)(az——)

a, _a_1

2
R azep-b2- (baca— azdz) n-3
- ajaz- cz 2
(o | x, t| posn—3,— 222 a
(ol =Ticht| goin -3 -ttt |——_med ).
n—3
c2dz 2
a;  Co P2 (baca—apdp)% "2
lep—-————————7 ae—b 727'[]{3(
<2 @ 3 (azez — b; aras—2 (k x¢).
27g,

Proof: See A.1.2.,A.1.3.,and A.1.4. in the Appendix.

Therefore, the Bayesian estimators are:

d
C?l 2_p,)2
e =
~2 2 — yn-1 1
G2 =E(0®|x) = Xi2 o (k| x¢),
_ n-3
by—cady a2 (Czdz )2
§ _ yn-1 ai 2
0 = Xik=2 pral N R - ek |xc),
2 a 2
a,—2% a,——2%
ay ay
n-3
cpdy . \2
7 _ yn-1 %2da— bzcz a3 Cg b2
bo=2k=2 ", .2 (€27 Z
1a2—C3 1 uz—i
az

bz (bac2— azdz)
ayar—c3

- (aze; — 2 a ”(k [ %)

3. Maximum Likelihood Estimation

For detecting gradual change point by using the maximum
likelihood method, Wang [7] discussed the topic using two sit-
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uations: when the autocorrelated coefficient ¢¢ is known and
unknown in the first-order autoregressive time series models.

(1) The variance o2 is known and the autocorrelated coeffi-
cient ¢y has a known initial value;
(2) The variance 6?2 is known but the autocorrelated coeffi-

cient ¢ is unknown.

In situation (1), for fixed k, the maximum likelihood esti-

mate of parameter § under the alternative hypothesis H; is

8= Ttper (= k) (e — Poxe—1)Xe—q/

Yok (E—k)xiy,
then the test statistic for testing the change point k is given by

*
Ay = max|A],

where

Pekrr (8 = ) (X — PoXe_1)Xe-1)?/
ok 02t — k)*xE_p).

Ak =

In another situation, the variance o2 is known but the auto-

correlated coefficient ¢, is unknown, Wang [7] gave the esti-
mates of parameters ¢, and § as follows
ff’o = Xfe2 XeXeo1/ Xi=2 xtz—l

and

8= Ttper (=) (e — Poxe—1)xe—1/

Thoksr (€ —k)*xE ;.

Thus, the test statistic detecting the gradual change point
for the autocorrelated coefficient ¢, can be obtained as:

G, = max |G
n 2<k<n| kl

where

s (€= K)Cre — Poxe—)xe—1)?/
Clteks1 0 (t_ k)zxt 1)-

sz

Since it is hard to obtain its limit distribution, so we pro-
pose using the stochastic simulation method to obtain asymp-

totic critical values.
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4. Simulation

In this section, we evaluate whether the techniques are
effective and feasible or not through a simulation study. We
obtained the Bayesian estimators of all parameters and maxi-
mum likelihood estimators in Section 2 and Section 3 respec-
tively. Firstly, sets of 100 observations are generated from the
stationary AR(1) model with ¢o=—0.01, §=0.03 and k
=70, where €; are normal random variables with a mean of
zero and ¢2=0.01. Then the corresponding time series plot is
shown in Fig. 1. By the way, Fig. 2 shows the function curve
of the posterior distribution m(k|x;) for change-point k
=2.3,---99. And the largest point is just 70 which is the
change-point k.

In order to further assess the reliability of the method, sets
of 200 observations are produced from another stationary
AR(1) model with ¢o=0.8, 5= —0.01 and k=100, where €;
are also normal random variables with a mean of zero and o

az2
1

Time

Fig. 1. Time plot with $o = —0.01 and § =0.03 (Bayes method).

Al

000 Q0o 00 0015 Q020 QS 000 oS

Time

Fig. 2. (k|x,) curve with ¢o= —0.01 and § =0.03.

=0.01. Then the corresponding time plot is given by Fig. 3.
Correspondingly, the function curve of the posterior distribu-
tion m(k|x,) is shown by Fig. 4. Then the maximum point of
the calculated final largest m(k|x;) is k=106, which is close
to the predetermined change-point k=100. The time differ-
ence is A(t) =6, so the relative error A(t)/T(n) =3.0%.

Next, to determine the reliability of the maximum likeli-
hood approach, we will simulate in the same way. But the
time plots will be omitted for simplicity. The predetermined
parameters will be the same. Thus, sets of 500 observations
generated from a stationary AR(1) model with ¢,=0.6, §
= —0.01 and k=400, where €; ~ N(0,0.01). Under the null
hypothesis Ho, when k=23,.--,500, the function graph of the
test statistic Ay is shown by Fig. 5. Then the maximum point
of the calculated final largest Aj is t =409 and the time dif-
ference is A(t) =9, so the relative error is 1.8%.

For the test statistic Gj;, its function curve is shown by Fig.
6. And then the calculated maximum point is ¢t =385, so the

3
y
x 8 J
N
3
o 50 100 150 200
Time

Fig. 3. Time plot with $o =0.8 and § = —0.01 (Bayes method).
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Fig. 4. m(k|x,) curve with ¢o=0.8 and §= —0.01.
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relative error is 3.0%. From the above results, we see that
both the Bayes and maximum likelihood methods have same
good performance for change-point estimation. Additionally,
the final relative error results are less than 5%, so two tech-
niques are reliable and feasible.

In addition, to test the power of the maximum likelihood
strategy, we take a new simulation study into account. We
deal with A} and G;; in Section 3. For the empirical sizes of
Ay and G, sets of 100, 300, and 500 observations are generat-
ed from the AR(1) model with ¢,=0.1,0.3,0.5, and 6
= —0.001, and the level of the test is a =0.05, ¢, ~ N
(0,0.01). Five hundred simulations are simultaneously imple-
mented. We consider the situations as follows:

10

o 100 200 300 400 500

Time

Fig. 5. Test statistic A}, curve.

(1) The variance g2 is known and the autocorrelated coeffi-
cient ¢o has a known initial value;
(2) The variance g2 is known but the autocorrelated coeffi-

cient ¢ is unknown.

Table 1 and Table 2 show the empirical sizes and powers of
A;, and G;; when level is @ =0.05, 62=0.01 and §= —0.001
respectively. Although the empirical sizes and powers do not
differ greatly from each other because of the sample size, it is
clear that the powers increase with sample size n. In addition,
the above outcomes on powers indicate that the maximum
likelihood method has good detection performance for gradu-
al change points; thus, it is worth rationalizing and validating
the theory further.

10

o] 100 200 300 400 500

Fig. 6. Test statistic G, curve.

Table 1. Empirical sizes and powers of A}, (¢=0.05, § = —0.001 and 62=0.01)

Size Power
b0
0.1 0.3 0.5 0.1 0.3 0.5
n 100 0.0460 0.0480 0.0540 0.9440 0.9540 0.9200
300 0.0300 0.0500 0.0620 0.9660 0.9620 0.9460
500 0.0360 0.0340 0.0340 0.9720 0.9680 0.9500
Table 2. Empirical sizes and powers of G (¢=0.05, § = —0.001 and 6*=0.01)
Size Power
bo
0.1 03 0.5 0.1 03 05
n 100 0.0620 0.0480 0.0380 0.9320 0.9400 0.9520
300 0.0400 0.0440 0.0320 0.9420 0.9620 0.9600
500 0.0220 0.0300 0.0340 0.9780 0.9660 0.9620
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5. Conclusion

This article discusses the fact that at an unknown time, a
continued type of change exists in the autoregressive coeffi-
cient such that the trend in that coefficient after the change is
linear. It does so by using the Bayesian estimation and maxi-
mum likelihood estimation methods when the variance is the
same before and after the change point, respectively. In Sec-
tion 2, we not only provided the posterior distributions of all
parameters, but also reveal their Bayesian estimation values.
In Section 3, we also discuss maximum likelihood estimators
of gradual change points, as well as some parameters. In sum,
the findings (shown in above figures) clearly illustrate that the
Bayesian approach is equally applicable as the maximum
likelihood approach for determining the position of gradual
change point. Moreover, the maximum likelihood method has
a high power for testing change points, as seen in Tables 1
and 2, and the feasibility and reliability of our strategies in

this paper can also be verified through simulation studies.
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Appendix : Proofs

A.1. Proof of kernels of all parameters

Here, we provide proofs of the kernels of parameters k, a2, § and ¢, in four parts.

A.1.1. Proof of kernel of k&

Here we let
e _n-1 . 1 . _ My +M3+MptMs 2
L= fO (2m) (<72)nT_1+1 exp{ 2-02 }da
+o0 1 My+Ms+Mp+Mg 2
ocf (02)_+1 X { 202 }d
_ M1 +M3+Mn+Ms L‘l My +M3+My+Ms
n—-1 My+M3+Mp+Mgy =1 oo (T2 =
=[P 2 [ £ =, exP(— Z—)do?
( —(a?) 2
-1l n-1 _n-1
=2z F(T)(Ml +M3 +M4, +M5) 2
then let
I = f Z_F(_)(M1 + M; + M, + Ms) 2 d¢’0
°<f (My + M3 + My + Ms)™ 2d¢o
where

My =37, (Xe — PoXeo1)? = G Xty XEq — 200 iz X Xeoq + Dty XE My = 28¢0 Xipsy (t — )Xy,

such that
My + My = ¢§ Tioy XEq — 2000 Liey XeXeoq + Xiep XE + 28¢0 Xioper (E — KX,
= P§ Xt X1 + 2¢0[8 Xioksr (t — K)XE — Xty XeXeq] + 2Py X7
)
=30, X2, |2 + 2, Slesers CROXE 1 =S XeXe—a +3n, X2
ShaXf
n w2 _yn 2 _
=yn, th ) [¢0 +5Zt=k+1(t ’;)Xt—; SheaXeXe-1|”  [8 Xfokas (E=R)XE 1 —FFp XeXe— 1] +3, X2,
t=2Xf-1 DY PP
Let
s _
a; =Xty X2 1,by = 2 kﬂ(t;)X[Xl Lz X 5
t=2t-1
S5
€1 = - gt)xztxlt f:t 2 Xekial + Xk, X = —ay - bi + X, X2,
then

M, + M, =a, (¢o+b)?*+c.
As t-distribution, we can obtain

Iz“f:rm (¢0+b1)2+c1+M3+M5] 2 d¢o
n-1

® _n-1 21772
= [0 (et My + M) -1 RG] g,

c1+M3+Ms

(cl+M3+M5) ; F(—)W/(n 2)11
Jai(n=2)/(ci +Mz+Mg5) TS >
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+o TED a1 (n=2)/ (e + Mz ¥ M5) (Po+b1)]
D e 1 4 MR 0L o = 2) ey + M+ M) (o + 1)
2

n-z -1

& (c; + M3 + Ms)_% R

Now we consider the integration of &, due to

ST —l)X2~ST s XeXeoa]
€ My + My = 62 5y (6= K)XEy = 28 D (= XKy — LR (pXia bl g, 2.
Similarly, we can also let

a; =Yg (E— k)Zth—pbz = Ytekrr E— )X X 1,0 = Xiogeqq (E— k)th—p d, = Yl Xe X160 = X1y th:

then
4+ Ms+Ms=6%a,—25-b, —ai(52-c§ —20,d,6 +d2) + e,
1
2 5 o2 Cady d
=6%.a,—-25 b, —262+2%2.25 L 4
a; a; a;
= (a5 —£)52 + 222 — b,)6 + ¢, — L2
2 a, a, 2 2 a;
c2dy 2 (Czdz_bz)z
=(a =D |6+ | e P
2 aj 2
az=g; a2 gy
Hence

+o0 _n2 2
I; = f_m (cy + M3+ M) 2 a,*ds

_n-2
c2dy 2 2
_n-2 a,—2)|s4-21_°
LI a2 (Czdz—bz)z z “ al) az—é
Y ©o a a
=a [ -2 |1+ ag | 90
a2 i Cay 02
“ TR
2
Tar
n-3
cod: 2
_1 2.1 a2 G fz 2_p,)?
o a P (a, — Dy fe, - E a2
1 a ap 2
27a,
_n-3
Cady 2 2
— 2 - d% ¢ ai —b2)
= (ma; —c3) 2 27,77 a2 .
a;——=2
ay

Therefore, the kernel of posterior distribution of k can be given by

n-3

1 22 ©2%2_p,y2 g
—= a
(k| x) < (a1, — c3)72 [e, _a_j_ : 2 (k).
az—z%

A.1.2. Proof of the kernel g%
We consider the kernel of posterior distribution of ¢2

n-1

(0% | x) & By [0 (17 @n0?) "7 - exp{— 25 [My + My + My + M)} - "2 depods.
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Let
+00 My+M, +00 (Po+b1)%+
P = f_w EXP{ > 4} ¢ = f_oo exp{—%}dqﬁo
and set
x =+ay(¢o + by)
then

P, = f_t:o exp {— %} exp {— C—l} L dx.

As the properties of x? distribution

Py = exp{ 202} \/_ f

e

Similarly, let

Cod2 2
(o, G
“2 g c3
+00 c1+M3+M, 27y 1
P,=[""expi—2—"—2tdS —exp4 = 5 V2mo.
—co 202 202 Ij 2
2
a—72
J 1
So
(@ G2
e it
]
2 2 ——n(k) 2 2 aq
n(0? | x) o iz} (2mo?) (e~ Sy enotyerp | - —E
) s ®27a, ]
n— a,—<2
_ yn-1 2y——— (k) 2\~ 2 27a;
=Yk=2 (2mo®) "z —7 (@1a; — ¢7) 2(2mo”)expq — 702
n-1 ¢ 2y a3 (Czaiz_bZ)z ’ 25
x Ykzz (0°) 77 |e — 2 2 n(k) - (a1a; — ¢3)72
az—g%
C2dz 4 2
n-3 3 ﬁ_( a bZZ)
d. 2 a
a3 Caborl” | e
leg -2 —-—"2——| exp{——m5—
2 a, _ﬁ P 202
az—g2
Czdz_
Y bq
Cady 2| 2
n-1 2 (==b2) 2——
n-1 (. 2\"—5— a3 a;
x i3 (07) 7 [ez—a—l——cg exp - (k| x,).
a5 J

A.1.3. Proof of the kernel
We derive the posterior distribution of § according to the properties of s-distribution and inverse
I'-distribution, we then the posterior distribution kernel of § , which can be given by

n(8 | xe) o Szh w(k) [17 [ (2mo) T exp {— M) L 52,

202
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M1+Mz+Mg+Mg 2oL

1 n(k)f (My + M; + M, + Ms)__f (Z—exp {—w}dazd%

b2z + 202
o Yz zﬂ(k)f (M1+M3+M4+M5) 2 d¢o

The kenel of § can be obtained as:

(8 | x) o« XpZ; w(k)(cy + Mz + Ms)

n-3
&2 (Ef:z_ E
o YR23 (¢ + M, +M5) 2 (az __)2 2T 2 (ke |xt).
az—z%

A.14. Proof of the kernel ¢
Similarly, we can also obtain the posterior distribution kernel of ¢,

n(o | ) e Tz mk) [ [} (2ot % exp - W}-U—Zda%

202

=2 ”(k)f My + M, + Ms)

where

b,— 2
My 4 M5 = 62 Biyean (6= K)2XE 1 = 28 Bikpn (6= K)(K, = GoXom1)Xooy = My — 22020

then

m(o | xe) o S35 m(k) - (M — Loy 50

n-3

d
§ le—bz)

1
- (b2—poc2)? a2 -1
8 ZL% (M; — %) 2 (alaZ - Cz)z [ez -2 — ﬁ} aZZT[(k [x¢).

C:
a; a,-2

A 2. Proof of Bayesian estimators of parameters

We also divide this part into four parts to obtain the Bayesian estimators of parameters k, 02, § and @o.

A.2.1. Proof of Bayesian estimator of k

We have obtained the kernel of posterior distribution of change-point k

2 2oyl
2 a
rk | %) o (@a, — )2 e, —E -~ 2| (i),
a aZ_ﬁ
As k is discrete, its posterior distribution is
_n-=3
1 43 (Czd2 by)?
(a1ap—c3)72 ez———455 (k)
az——=
(k| x) = o 2<k<n

2
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then the Bayesian estimator k of change-point k is k = argmaxn(k | x,).
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A.2.2. Proof of Bayesian estimator of g2
As a t-distribution, its density function is
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where n is degree of freedom, ¢ is location parameter and o is scale parameter, then E(f) = u. In addition,
for inverse gamma distribution, written as IGa(a, B), its density function is
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where both @ and $ are parameters, then E(IGa) = Flnally, for x*(n) with degree of freedom n, its
density function is

n,
frpn)=—5—- x2""-e2,x>0.
221
Hence,
o[ B CEEY)
—_— 2= T >
o a2 (Eidz—bz)z 2 “ az—Z—%
n(o? | x) x ¥iZz (02) 72 |eg =2 ——t—0—| exp{———5—— m(k|x)
ay az—ﬁ 20
n-z
&2 (——b )2\ 2
ez——l—ig
927q; c2dz_, 2
— (- CEE)
\ e
= Té;% - -1 expy — ;z (k| x¢)
F(T)(‘TZ) 2 l J
a3 (222-p,)?
ey— r 72
n—-1 2.3 az—u—i
=Yz IGa(o% =, 5 (k| xp).
The Bayesian estimator of o2
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A .2.3. Proof of Bayesian estimator of &
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Therefore, the Bayesian estimator of § is
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A.24. Proof of Bayesian estimator of ¢
Finally, we consider s
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Therefore, the Bayesian estimator of ®o is given by
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