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1. Introduction

In climatic data analysis, the observations and so-called 
reanalysis data are used. The weather stations are irregular in 
the sense that starting years are different, spatial distribution is 
not on grid, and the location is sometimes moved over years. 
Spatial resolutions for each nation are different. Reanalysis data 
are developed to overcome this disadvantage of the observa-
tions. APHRODITE (Asia Precipitation Highly Resolved 
Observational Data Integration Towards Evaluation) is a reanal- 
ysis data for a daily gridded rainfall covering a period of more 
than 57 years collected based on rain gauge information across 

Asia [1]. The spatial resolution is high as 0.5° × 0.5°. It has 
been widely used for the evaluation of the numerical model 
and for assessing climatic change [2-5]. However, some works 
have indicated that it significantly underestimates the extreme 
rainfall for several regions compared to the observations based 
on weather stations [6,7]. Major reasons of this bias are due to 
quality control of data and different interpolation method [7]. 
In this study, we first check the differences of extreme rainfall 
between APHRODITE and the observations across Korea, 
souther China, Philippines, and Thailand. Then we apply a 
multivariate bias-correction method to APHRODITE to reduce 
the bias and to estimate missing values of extreme rainfall. 
Our main focus in this study is the annual maximum daily pre-
cipitation (AMP1).

Fig. 1 shows 72 observation stations and 41 grid points over 
Korean peninsula. Note that there are spacious gap in North 
Korea. For the interpolation in North Korea, we have used 
some data in nearby stations of China.
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2. Bias Correction
 
2.1 �Difference between the observations and 

APHRODITE

The AMP1 in APHRODITE has serious bias in its mean and 
variance, as shown in Fig. 2. It shows examples of time series 
plots of the AMP1 from the observations (OBS, blue line) and 
APHRODITE data (green line) for some observational stations 
near the grid points over Korea, southern China, Philippines, 
and Thailand. From this figure, we see APHRODITE underesti-
mates the extreme observations for almost locations. The varia-
tions of APHRODITE are smaller than those of the observa-
tions. Thus an improvement is needed for extreme rainfall of 
APHRODITE for further analysis such as for assessing climatic 
change.

The observations in Korea, in southern China, in Philippines, 
and in Thailand were obtained respectively from the Korea 
Meteorological Administration (KMA) [8], from Regional Cli-
mate Group (University of Gothenburg) [9], from the Philip-
pines Atmospheric, Geophysical and Astronomical Services 
Administration (PAGASA) [10], and from the Thai Meteorolog-
ical Department [11].

 

2.2 Barnes interpolation

To predict the precipitation of grid points based on weather 

stations, an interpolation technique is usually used. Among 
many interpolation methods, we used the iterative Barnes inter- 
polation scheme [12,13]. The Barnes technique produces a rain-
fall field on a regular grid from irregularly distributed rainfall 
observation stations [3,7].

For given data, For given data, 𝑦𝑦(𝑥𝑥�), 𝑦𝑦(𝑥𝑥�),⋯ , 𝑦𝑦(𝑥𝑥�) at sites 𝑥𝑥�, 𝑥𝑥�,⋯ , 𝑥𝑥�, we want to interpolate 𝑦𝑦 

for a new site (or grid) 𝑥𝑥. The first iteration of the Barnes scheme is  

 𝑔𝑔�(𝑥𝑥) = ∑���� 𝑤𝑤�𝑦𝑦(𝑥𝑥�)∑���� 𝑤𝑤�, (1) 

 where 𝑤𝑤� = 𝑒𝑒𝑒𝑒𝑒𝑒(− �(�,��)�
��

)  is the weight and 𝑘𝑘� = 5 × (2𝛿𝛿�𝜋𝜋)  for the average distance 

between locations 𝛿𝛿�. The second iteration updates the weight to 𝑤𝑤�(�) = 𝑒𝑒𝑒𝑒𝑒𝑒(− �(�,��)�
�×��

) for 

0 < 𝛾𝛾 < 1 with 12 default. Then a new interpolation is  

 𝑔𝑔�(𝑥𝑥) = 𝑔𝑔�(𝑥𝑥) + ∑���� 𝑤𝑤�(�)[𝑦𝑦(𝑥𝑥�) − 𝑔𝑔�(𝑥𝑥)] ∑���� 𝑤𝑤�(�). (2) 

 Note that the last term in (2) is a correction based on the residual 𝑦𝑦(𝑥𝑥�) − 𝑔𝑔�(𝑥𝑥). The third 

iteration is  

 𝑔𝑔�(𝑥𝑥) = 𝑔𝑔�(𝑥𝑥) + ∑���� 𝑤𝑤�(�)[𝑦𝑦(𝑥𝑥�) − 𝑔𝑔�(𝑥𝑥)] ∑���� 𝑤𝑤�(�), (3) 

 where 𝑤𝑤�(�) = 𝑒𝑒𝑒𝑒𝑒𝑒(− �(�,��)�
�×��

) is again the updated weight with 𝑘𝑘� = 𝛾𝛾𝛾𝛾�. These iterations 

continue until convergence. 

We used a R function “interpBarnes" in OCE library [14]. The default interaction is 2, which 

means it stops after the third iteration. For the interpolation on a grid, we used 5 nearest 

neighbor stations surrounding the grid point in actual computation. Instead of using 5 nearest 

neighbors, one can apply a threshold of distance from the grid to determine the number of 

nearest stations, even though we did not try it in this study. It introduces a problem of selecting 

the threshold, but may be a good way to choose nearest stations. 

 

2.3  Multivariate bias correction 
 

Lee et al.[7] indicated this problem in South Korea and suggested to improve it using a 

quantile mapping (QM) bias-correction (BC) method [15, 16]. For the same purpose, in this study, 
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. These iterations continue until convergence.
We used a R function “interpBarnes” in OCE library [14]. 

The default interaction is 2, which means it stops after the 
third iteration. For the interpolation on a grid, we used 5 near-
est neighbor stations surrounding the grid point in actual com-

Fig. 1. Map of the Korean peninsula with 72 weather stations in the automated synoptic observing system (ASOS) available in this study (left 
panel) and with 41 grids of 1° × 1° on which maximum rainfall for dotted grids are analyzed (right panel).

Longitude Longitude 

La
tit

ud
e

La
tit

ud
e



	 Park H et al. : Bias-correction and Missing Value Estimation	 3

putation. Instead of using 5 nearest neighbors, one can apply a 
threshold of distance from the grid to determine the number 
of nearest stations, even though we did not try it in this study. 
It introduces a problem of selecting the threshold, but may be 
a good way to choose nearest stations.

2.3 Multivariate bias correction

Lee et al. [7] indicated this problem in South Korea and 
suggested to improve it using a quantile mapping (QM) bias-
correction (BC) method [15,16]. For the same purpose, in this 
study, we employ the multivariate bias correction (MBC) 
method which may be better than QM method [17]. The MBC 
is a multivariate generalization of quantile mapping (QM). 
The MBC is applicable not only for several climate variables 
but also for spatial observations of one variable. It deal with 
spatial dependency (by a covariance matrix) among the obser-

vations of nearby stations [18]. In the MBC, an image pro-
cessing technique designed to transfer color information from 
one image to another is adapted. In each iteration of MBC 
method, univariate QM is first applied separately to each vari-
able. Then a linear multivariate BC [15] is applied by rescal-
ing the multivariate anomalies based on Cholesky decomposi-
tion of the covariance matrix. The algorithm ends when both 
the corrected marginals and the dependence structure are suf-
ficiently close to their observed counter parts. The MBC algo-
rithm consists of a random orthogonal rotation of multivariate 
input data, a univariate quantile delta mapping on the rotated 
fields, and the inverse rotation, in each iteration. In this study, 
the multivariate input is consisted of nearest neighbor spatial 
reanalysis data around a grid point. Thus for each grid point, 
six-variate BC was performed because five nearby stations are 
co-operated with the one grid point, even though the climate 

Fig. 2. Examples of time series plots of the observations (OBS, blue line) and APHRODITE data (green line) for some observational stations near 
the grid points over Korea, southern China, Philippines, and Thailand.
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variable is only the extreme precipitation. See [17] for more 
details.

For a given grid point, we applied MBC to APHRODITE 
data based on the observations of nearest neighbor stations.  
We used ‘MBC’ package [19] in R for computation. The details 
on various multivariate BC methods are available in [20].

Fig. 3 shows the bias-corrected APHRODITE values (purple 
line) for some grids near the observational stations over Korea, 
southern China, Philippines, and Thailand.

2.4 Back-interpolation

When we obtained the bias-corrected APHRODITE values 
over grid points, we can apply Barnes interpolation again to 
some locations (not necessarily on grids) where there are no 
observational records. It is an interpolation from grids to 
uneven locations, which is a reverse action from the above sub-

section 2.2. We call it “back-interpolation”. In this study, the 
bias corrected APHRODITE data and the observations at sta-
tions (if those are available near to the target station) were used 
together for a better back-interpolation. This technique is useful 
to construct a series of new data as illustrated in the next sub-
section for North Korea.

 
2.5 Application to North Korea

As seen in Fig. 1, there are spacious gap in North Korea. We 
firstly obtained the bias-corrected APHRODITE values over 
grid points, and then we constructed a time series of the AMP1 
observations for some cities by the back-interpolation. Those 
data obtained by this approach are presented in Table 1 for 5 
locations (Hoiryoung, Hoicheon, Guseong, Goksan, and Jang- 
jin), for example.

Fig. 3. Same as Fig. 2 but the bias-corrected values (purple line) are added.
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3. Missing Value Estimation

There are sometimes missing values in the series of the 
AMP1. Missing values are usually incurred due to incorrect 
measurements or handling error. When we have the bias-cor-
rected APHRODITE values, it can be used to estimate the miss-
ing values in the AMP1 of the station. That is, we employed the 
back-interpolation to estimate the missing values of the AMP1 
from the bias-corrected APHRODITE values of nearest grids 
surrounding the station with missing. WE think this approach to 
estimate missing values in the observations is simple and easy 
to use, so be useful for climate data analysis.

3.1 Application to the Philippines

There are some missing values in the AMP1 in some stations 
in the Philippines. We thus estimated those missing values 
using back-interpolation. Table 2 indicates time series of the 
AMP1 from 1973 to 2014 for four locations (Butuan, Cotabato, 
Itbayat, and Virac Synop) in the Philippines constructed by a 
back-interpolation technique. The values in the parenthesis just 
after NA are the estimated missing values.

Fig. 4 shows how the missing values are estimated by the 
back-interpolation method for four stations (Butuan, Cotabato, 
Itbayat, and Virac Synop) in the Philippines. The blue line 

Table 1. Time series of the annual maximum daily precipitation (AMP1) of the APHRODITE from 1973 to 2014 for five locations (Hoiryoung, 
Hoicheon, Guseong, Goksan, and Jangjin) in North Korea. The values in the parenthesis are constructed by a back-interpolation technique

Location Time series of AMP1 in North Korea

Hoiryoung

55 (54) 65 (49) 40 (79) 102 (67) 56 (56) 63 (51) 69 (57)
62 (43) 46 (63) 198 (189) 78 (65) 213 (63) 57 (78) 185 (168)
76 (77) 59 (160) 60 (86) 68 (62) 98 (47) 111 (53) 93 (55)
50 (164) 83 (105) 75 (143) 47 (64) 79 (53) 76 (56) 61 (99)

101 (109) 167 (77) 89 (109) 73 (71) 67 (82) 50 (82) 75 (91)
96 (96) 58 (82) 144 (89) 55 (52) 106 (132) 46 (65) 81 (51)

Hoichen

257 (86) 107 (68) 140 (70) 26 (46) 202 (81) 175 (87) 45 (49)
58 (60) 247 (118) 79 (74) 77 (107) 187 (92) 83 (95) 151 (73)

134 (146) 104 (142) 176 (120) 97 (104) 140 (50) 68 (84) 89 (154)
104 (117) 472 (181) 119 (108) 88 (93) 114 (96) 71 (134) 48 (70)
88 (125) 42 (79) 91 (129) 86 (112) 51 (104) 83 (77) 141 (191)
89 (105) 157 (146) 217 (300) 91 (210) 133 (252) 280 (443) 91 (104)

Guseong

266 (85) 117 (76) 121 (64) 66 (59) 190 (73) 123 (73) 137 (88)
110 (75) 170 (103) 132 (91) 171 (106) 96 (104) 136 (161) 199 (90)
110 (122) 99 (115) 160 (91) 182 (76) 113 (59) 55 (59) 126 (161)
170 (105) 172 (127) 86 (98) 374 (85) 113 (107) 131 (94) 134 (92)
142 (127) 118 (130) 106 (133) 100 (137) 74 (106) 95 (90) 111 (176)
114 (94) 109 (107) 260 (260) 77 (125) 139 (157) 219 (171) 211 (111)

Goksan

77 (60) 68 (57) 156 (101) 86 (75) 133 (77) 176 (103) 101 (75)
216 (116) 141 (124) 101 (115) 78 (98) 85 (84) 211 (83) 81 (112)
118 (155) 101 (120) 123 (89) 206 (62) 75 (50) 63 (62) 143 (106)
91 (96) 80 (100) 118 (192) 159 (83) 94 (140) 92 (129) 79 (105)

135 (117) 88 (95) 173 (120) 101 (121) 143 (119) 67 (374) 183 (112)
88 (133) 204 (363) 209 (184) 161 (179) 279 (124) 164 (136) 63 (85)

Jangjin

107 (56) 40 (31) 56 (35) 57 (40) 83 (31) 94 (59) 92 (43)
44 (34) 70 (67) 75 (66) 78 (77) 64 (78) 66 (75) 80 (76)
56 (82) 97 (71) 96 (56) 72 (41) 77 (30) 58 (64) 45 (79)
99 (83) 72 (96) 35 (73) 52 (78) 29 (56) 39 (81) 62 (75)
48 (86) 56 (62) 37 (70) 69 (81) 39 (67) 74 (58) 120 (91)
56 (74) 118 (114) 132 (117) 83 (82) 98 (140) 101 (141) 77 (73)
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stands for the observations, purple line and red line are back-
interpolated values and estimated missing values, respectively.

 
 

4. Summay and Discussion

We found there are significant bias in APHRODITE reanaly-
sis data, specially in heavy rainfall, in its mean and variance for 
such areas as in Korea, southern China, Philippines, and Thai-
land. We thus tried to obtain an improved data by reducing 
biases using a multivariate bias correction (MBC) method. 
When we had the bias-corrected reanalysis data on grids, so-
called back-interpolation is applied to construct a time series of 
the AMP1 (annual maximum daily precipitation) on the loca-
tions where there are no observational records. The back-inter-
polation is also applied to estimate missing values in the obser-
vations. This approach is illustrated with some cities in North 

Table 2. Time series of the annual maximum daily precipitation (AMP1) of the APHRODITE from 1973 to 2014 for four locations (Butuan, Co-
tabato, Itbayat, and Virac Synop) in the Philippines. The values in the parenthesis are constructed by a back-interpolation technique. The values in 
the parenthesis just after NA are the estimated missing values

Location Time series of AMP1

Butuan

NA (139) NA (150) NA (102) NA (122) NA (109) NA (208) NA (98)
NA (121) 176 (96) 110 (117) 109 (182) 128 (91) 272 (110) 147 (129)
130 (117) 191 (158) 96 (109) 94 (100) 98 (100) 95 (86) 172 (132)
168 (129) 132 (196) 128 (104) 98 (90) 86 (169) 111 (135) 168 (176)
167 (177) 117 (110) 134 (150) 186 (191) 98 (179) 160 (165) 91 (117)
120 (164) 201 (107) 118 (96) 207 (202) 153 (169) 118 (122) 129 (243)

Cotabato

NA (88) NA (98) NA (75) NA (127) NA (86) NA (100) NA (202)
NA (88) NA (118) NA (141) NA (82) NA (102) NA (73) 67 (76)
69 (87) 104 (100) 142 (128) 142 (88) 96 (74) 82 (86) 61 (137)
99 (113) 136 (150) 202 (176) 83 (139) 85 (82) 80 (76) 146 (69)
89 (95) 78 (109) 101 (83) 97 (61) 83 (87) 130 (122) 115 (66)

109 (117) 141 (91) 81 (68) 75 (140) 96 (82) 66 (79) 77 (130)

Itbayat

187 (144) 246 (230) 151 (182) 155 (168) 67 (177) 104 (252) 119 (56)
202 (310) 340 (182) 450 (401) 1000 (143) 396 (58) 208 (236) 160 (194)
838 (716) 43 (174) 366 (101) NA (169) NA (100) NA (151) 23 (287)
190 (127) 41 (275) 250 (202) 241 (299) 94 (121) NA (256) 129 (397)
241 (248) 194 (386) 297 (298) 223 (137) 174 (259) 303 (709) 129 (160)
171 (87) 175 (190) 210 (116) 164 (211) 256 (154) 134 (209) 257 (235)

Virac Synop

NA (320) NA (256) NA (207) NA (226) NA (104) NA (356) NA (97)
NA (138) 250 (213) 230 (195) 340 (108) 95 (155) 179 (125) 264 (126)
340 (76) 122 (227) 143 (130) 95 (340) 110 (131) 76 (133) 207 (274)
132 (228) 179 (171) 191 (236) 183 (206) 415 (127) 273 (140) 199 (300)
149 (265) 126 (137) 302 (363) 220 (122) 114 (234) 172 (325) 343 (221)
117 (217) 245 (165) 138 (127) 245 (284) 136 (124) 98 (173) 240 (289)

Fig. 4. The missing values estimates (red line) obtained by the back-
interpolation method for four stations (Butuan, Cotabato, Itbayat, and 
Virac Synop) in the Philippines. The back-interpolated values (purple 
line) and the observations (blue line) are also presented.
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Korea and in the Philippines. It would be nice to extend this 
approach to all grids over Asia. We leave this work for a future 
study.

For interpolation method in this study, we used the Barnes 
iterative technique. However, one can employ other methods 
such as Kriging or bilinear interpolation or thin-plate spline or 
machine learning methods [21,22]. The result will be different 
upon what method is employed for the interpolation.

The back-interpolation (BkI) technique may be useful to 
check any bias or uncertainty due to bias correction and inter-
polation methods. For a given location with good observations, 
we firstly apply Barnes interpolation (BrI) and MBC on nearby 
grid. Then, from the bias-corrected reanalysis data, we apply 
BkI to the given original location to check how much differ-
ence between the original observations and the back-interpolat-
ed values. If the difference is small, we can say the methods 

(BrI, MBC, and BkI) are sound and acceptable.
Heavy rainfall can have a significant effect on human life, 

infrastructure, agriculture and livestock, and natural ecosys-
tems. Hence, in addressing the impact of frequent downpour 
events, governments and communities should prepare the pro- 
per systems and infrastructure more securely and carefully to 
prevent critical damage such as a loss of life from landslides 
and floods.
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