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Introduction

Frailty models have been widely used for the analysis of uni-

variate or correlated time-to-event data [1,2]. For the inference

of semiparametric frailty models, extensions of Cox’s propor-

tional hazards models, many authors have proposed likelihood-

based methods [3-6]. In particular, the gamma frailty model has

been often used because it gives an explicit marginal likelihood.

The usual marginal likelihood methods such as the EM algo-

rithm use the discrete nonparametric Breslow estimates for un-

known baseline hazards playing the role of nuisance parameters:

see for example Nielsen et al. [3] and Andersen et al. [7].

Recently, in semiparametric gamma frailty models Rondeau

et al. [8] and Barker & Henderson [9] have numerically showed

that the use of Breslow estimates in the EM can lead to small-

sample underestimation of parameters, particularly for frailty

parameters. For the reduction of the bias they have proposed

the use of the continuous nonparametric estimates, instead of

the Breslow estimate, for the baseline hazards. However, the

bias problem may also occur because the number of nuisance

parameters in baseline hazards increases with sample size. Un-

der this situation the uncertainties in the nuisance parameter

estimation should be considered in estimating the frailty para-

meter. Thus, this problem can be solved by the use of appro-

priate profile likelihood methods for eliminating them.

In this paper we study and discuss various likelihood appro-

aches based on marginal likelihood [3][7] and h-likelihood [10-

12], and show how to profile the nuisance parameters. Note

here that we still use the Breslow estimates. For the illustration,

with semiparametric gamma frailty models the real-data exam-

ples and small-sample simulation studies are presented. Further-

more, both h-likelihood and Bayesian approaches are also com-

pared and their relationship is studied.

Frailty Models

Let Tij(i==1, ..., q, j==1, ..., ni, n==»ini) be the time-to-event

(survival time) for the jth observation of the ith individual (e.g.

subject or cluster) and Cij be the corresponding censoring time.

Let the observable random variables be yij==min(Tij, Cij) and

δij==I(Tij‹Cij), where I(∙) is the indicator function. Denote by

Ui the unobserved frailty random variable (or random effect) for
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the ith individual.

The frailty models are described as follows. Given Ui==ui the

conditional hazard function of Tij is of the form 

λij(t ⎜ui)==λ0(t) exp(xT
ijβ)ui, (1)

where λ0(∙) is a parametric or nonparametric baseline hazard

function, xij==(xij1, ..., xijp)
T is a vector of fixed covariates and is

a vector of the corresponding regression parameters. For iden-

tifiability purposes the term xT
ijβ does not include an intercept

term if the baseline hazard λ0(∙) is unspecified. The frailties

Ui are assumed to be independent and identically distributed

random variables with a density function having frailty parame-

ter α.

For the gamma distribution the marginal likelihood is expli-

citly obtainable, whereas for the lognormal distribution it is not,

but the penalized partial likelihood [13], an approximation of

the marginal likelihood, is available. For both frailty distribu-

tions the h-likelihood provides a simple unified framework [11,

14]. It is worthy to note that the h-likelihood method can be

easily applied to other frailty distributions such as the inverse

Gaussian.

Likelihood-based Methods 

Following Lee and Nelder [10] and Ha et al. [11], the h-like-

lihood for frailty models (1) is defined by 

h==h(β, λ0, α)==»
ij

l1ij++»
i 

l2i, (2)

where 

l1ij==l1ij(β, λ0; y
*
ij⎜ui)==δij{log λ0(yij)++ηij}-{Λ0(yij) exp(ηij)}    

is the logarithm of the conditional density function for y*
ij==(yij,

δij) given Ui==ui, l2i==l2i(α; ui) is the logarithm of the density

function for Vi==log(Ui) with parameter α, Λ0(t)==
t

-∞λ0(k), is

the baseline cumulative hazard function, and ηij==xT
ijβ++ui with

ui==log(ui).

Marginal likelihood, denoted by m, has been often used for

inference; it can be obtained by integrating out the frailties

from the h-likelihood of (2): 

m==m(β, λ0, α)==»
i

log{ exp(hi) dvi}, (3)

where hi==»
j  

l1ij++l2i is the contribution of the ith individual to

h in (2). The marginal likelihood in (3) often requires intracta-

ble integration (e.g. lognormal frailty) except for gamma frail-

ty [11].

Assume that the functional form of λ0(t) is known; for exam-

ple, λ0(t)==φ1φ2t
φ2-1 is Weibull baseline hazard and λ0==(φ1,φ2)

T.

Let l==l(β*, θ) with β*==(β, λ0) be a likelihood, either an h-like-

lihood, h, or a marginal likelihood m, with nuisance parameters

θ . Lee and Nelder [15] considered a function pθ(l), defined by

1
pθ(l)==[l-mm log det{D(l, θ)/(2π)}]⎜θ==θ̂,

2

where D(l, θ)==-∂2l/∂θ2 and θ̂ solves ∂l/∂θ==0. The function

pθ(∙) produces an adjusted profile likelihood, eliminating nui-

sance effects θ, which can be fixed effects or β* random effects

u or both. In general, pu(h) is the first-order Laplace approxi-

mation to m(i.e. pu(h)�m) and pβ*,u(h)�pβ*(m) [14,15]. In

principle, we argue, that one should use the h-likelihood, h, for

inferences about u; the marginal-likelihood, m, for β*; and the

restricted likelihood, pβ*(m), for the dispersion parameter α.

When m is numerically difficult to obtain, we can use pυ(h) and

pβ*,u(m) as approximations to m and pβ*(m), respectively. Fur-

thermore, the second-order Laplace approximation [15,16],

denoted by ps
υ(h), to m is defined by 

ps
υ(h)==pu(h)-F(h)/24, (4)

where F(h)==trace(S)u== û with 

S==-{3(∂4h/∂u4)++5(∂3h/∂u3)D(h, u)-1(∂3h/∂u3)}D(h, u)-2.

Now, consider the gamma frailty models with E(Ui)==1 and

var(Ui)==α. From (3) we have an explicit marginal likelihood: 

m==m(β, λ0, α)==»
ij

[δij{xT
ijβ++log λ0(yij)}]

++»
i

{-(α-1++δi++) log(α-1++μi++)

++log Γ(α-1++δi++)-c(α)}, (5)

where δi++==»j δij, μi++==»j μij==»j Λ0(yij) exp(xT
ijβ) and c(α)==

log Γ(α-1)++α-1 log α. The corresponding h-likelihood is given

by 

h==h(β, λ0, α)==»
ij

[δij{xT
ijβ++log λ0(yij)}]

++»
i

{(α-1++δi++)ui-(α-1++μi++)ui-c(α)}.

From 

∂h/∂ui==(δi++++α-1)-(μi++++α-1)ui==0,

we have 

α-1++δi++ûi==mmmmmmmα-1++μi++
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Note here that the adjustment term for pu(h), 

D(h, u) ⎜ui==ûi
==-∂2h/∂u2⎜ui==ûi

==(α-1++μi++)ûi==α-1++δi++, 

is free of (β, λ0) but depends upon α. We have that 

1
pu(h)==[h-mm log det{D(h, u)/(2π)}] ⎜u==û2

==»
ij

[δij{xT
ijβ++log λ0(yij)}]

++»
i

{-(α-1++δi++) log(α-1++μi++)

++(α-1++δi++) log(α-1++δi++)-(α-1++δi++)

-log(α-1++δi++) /2++log(2π)/2-c(α)}, (6)

which is equivalent to approximating m of (5) by the first-

order Stirling approximation 

log Γ(x)�(x-1/2) log(x)++log(2π)/2-x

for Γ(α-1++δi++) . Thus, the marginal maximum likelihood (ML)

estimator for β (maximizing pu(h)) can be obtained by maximi-

zation of h. Furthermore, a good approximation to the ML esti-

mator for α can be obtained by using pu(h) if the first-order

Stirling approximation works well. It can be further shown that

the second-order Laplace approximation ps
u(h) is equivalent to

approximating m by the second-order Stirling approximation 

log Γ(x)�(x-1/2) log(x)++log(2π)/2-x++1/(12x).

Here the term, S, in (4) is given by S==diag{-2(α-1++δi++)-1}.

Nonparametric Baseline Hazard Models

The model (1) can be directly fitted using likelihoods based

on h of (2) or m of (3) if the parametric form of λ0(t) in (1) is

specified. When the functional form of λ0(t) is unknown, fol-

lowing Breslow [17], we consider the baseline cumulative haz-

ard function Λ0(t) to be a step function with jumps at the dis-

tinct observed death times, 

Λ0(t)== »
k:y(k)‹t

λ0k (7)

where y(k) is the kth (k==1, ..., s) earliest distinct death time

among the yij’s, and 
t
λ0k==

t
λ0(y(k)).

Let w==(w1, ..., wr)
T, where wk==log λ0k. The first term in h-

likelihood of (2) can be rewritten as follows: 

l1(w, β)==»
ij

l1ij==»
ij

δij{log 
t
λ0(yij)++ηij}-»

ij
{Λ0(yij) exp(ηij)}    

==»
k

d(k)wk++»
ij

δijηij-»
k

exp(wk){ »
(i, j)∈R(k)

exp(ηij)},
(8)

where d(k) is the number of deaths at y(k) and R(k)==R(y(k))=={(i,

j) : yij›y(k)} is the risk set at y(k).

Since the dimension of w increases with sample size, for

estimation of (β, u) Ha et al. [11] proposed the use of profile

likelihood 

h*==h ⎜w== ŵ

=={»
k

d(k)ŵk++»
ij

δijηij-»
k

d(k) }++»
i

l2i (9)

with w eliminated, where 

d(k)exp(ŵk)==mmmmmmmmmmmmmmmmm
»(i, j)∈R(k)

exp(xT
ijβ )ui

are solutions of the estimating equations, ∂h/∂wk==0, for k==1,

..., r. For gamma or lognormal frailty models, h* becomes the

kernel of the penalized partial likelihood [13]. Ha et al. [11]

further showed that given α the joint estimating equations for

τ==(βT, uT)T are obtained from 

∂h*/∂τ==(∂h/∂τ ) ⎜w== ŵ

For inference of the frailty parameter α, Lee and Nelder [15]

and Ha and Lee [14] have proposed the use of the adjusted

profile h-likelihood, pτ(h
*), i.e. after eliminating τ, defined by 

1
pτ(h

*)==[h*-mm log det{D/(2π)}]⎜ (10)
2                             τ==τ̂,

where τ̂==τ̂ (θ)==(β̂T(θ), ûT(θ))T, û solve ∂h*/∂u==(∂h/∂u) ⎜w== ŵ,

and D==D(h*; τ )==-∂2h*/∂τ 2 is an information matrix for τ .

Note that the first-order approximation in (10) performs well

for lognormal frailty. However, for a non-lognormal frailty

such as gamma frailty, Ha and Lee [6,14] have demonstrated

that the second-order Laplace approximation (i.e. ps
τ(h

*)) works

better.

The usual inference methods using marginal likelihood also

use the assumption (7) for the baseline hazard. Since the nui-

sance parameters λ0k are unknown, their estimates are substi-

tuted into m. That is, the estimates
~λ0k from ∂m/∂λ0k==0 are

substituted into the marginal likelihood after frailties are inte-

grated out. For the inference the usual profile marginal likeli-

hood based on of (3) has been often used, defined by 

m*==m ⎜w== ŵ, (11)

where ~mk==log
~λ0k: for example, for the gamma frailty models

see Nielsen et al. [3] and Andersen et al. [7].

In this paper we are interested in the inference of the frailty

parameter α in semiparametric frailty models. Since the num-

ber of nuisance parameters w increases with sample size n, the



use of m* of (11) (hence p*
u(h) or p*s

u (h)) can lead to the under-

estimation for α: see the simulation results of Table 3. Here, 

p*
u(h)==pu(h) ⎜w== ŵ  and  p*s

u (h)==ps
u(h) ⎜w== ŵ .

It is recommended to use an adjusted profile likelihood, pw(m),

after eliminating w from m if m is available. We have found

via simulation studies that the use of pw(m) with wk==log λ0k

works better than in that of pλ0
(m). Theses profile likelihoods

have the following relationships.

Result 1. Following Ha et al. [12], we can show that in the

semiparametric gamma frailty models (1), we have 

(i) pw(m)�pw,u(h)==pu(h
*)++c,

(ii) pw(m)�ps
w,u(h)==ps

u(h
*)++c,

(iii) pw,β(m)�pw,β ,u(h)==pβ ,u(h
*)++c,

(iv) pw,β(m)�ps
w,β ,u(h)==ps

β ,u(h
*)++c

1
where c==mm»

k
log{d(k)/(2π)} does not depend on the frailty 

2
parameter α.

From (i) and (ii) of Result 1 we find the following facts. The

pw(m) is a proper profile likelihood, but it requires the compu-

tation of m. When m is hard to obtain the use of pw,u(h) or pu(h
*)

is possible. Note here that the difference between pw,u(h) and

pu(h
*) is constant [6]. However, the computation of pw,u(h) is

also difficult because the dimension of nuisance parameters w

increases with sample size. Thus, the use of pu(h
*) or ps

u(h
*) is

recommended; Next, from the Result (iii) and (iv) we see that

pβ ,u(h
*) or ps

β ,u(h
*) is recommended when the number of fixed

covariates is several. We investigate the performance of these

profile likelihood methods by simulation below.

Real-data Examples

Numerical examples using well-known two real data set are

presented to compare the various marginal- and h-likelihood

methods. We consider the semiparametric gamma frailty model

which gives an explicit marginal likelihood. Here, given the

frailty parameter α, the marginal- and h-likelihood methods

provide the same estimates for β. However, the methods give

different estimators for α. The estimates of α were obtained

by maximized the various profile likelihoods for α.

Example 1: Kidney infection data [18]. The data consist of

times to the first and second recurrences of infection in 38 kid-

ney patients using a portable dialysis machine. Infections can

occur at the location of insertion of the catheter. The catheter

is later removed if infection occurs and can be removed for

other reasons, which we regard as censoring. Here, each sur-

vival time is time to infection since insertion of the catheter.

The survival times from the same patient are likely to be relat-

ed because of frailty describing the patient’s effect.

We use a single covariate, the sex of the patients, coded as

1 for male and 2 for female. The results are given in Table 1.

As expected, m* & p*s
u (h), pw(m) & ps

u(h
*) and pβ ,w(m) & ps

β ,u(h
*)

give, respectively, about the same estimation results. However,

we find the estimates from m* and p*s
u (h) lead to smaller values

than those from ps
u(h

*) and ps
β ,u(h

*). These results indicates that

the maximization of m* and p*s
u (h) give an underestimation for

both frailty and regression parameters (α, β ). We claim the

nuisance parameters have to be eliminated properly in order to

concentrate the inference on the parameter of interest: see also

simulation results of Table 3.

Example 2: Mammary tumour data. Gail et al. [19] present-

ed data on multiple occurrences of mammary tumours for 48

female rats. The observations are the times to the development

of a mammary tumour for 23 female rats in the treatment group

and 25 female rats in the control group. Initially, 76 rats were

injected with a carcinogen, and each rat was treated with retinyl

acetate for the next 60 days. Some 48 rats were tumour-free

after 60 days. These rats were randomly assigned to continued

retinoid prophylaxis or to the control group, where they receiv-

ed no treatment. Rats were palpated for tumours twice weekly

and observed for 122 days. The main objective of the study

was to evaluate treatment. The time origin is the day of the ini-

tial carcinogen injection. The survival time Tij(j==1, ..., ni) is

then calculated as ti,j-ti,j-1, where ti,j with ti,0==0 is the jth tu-

mour occurrence time of the ith rat, which is the inter-arrival

(gap) time between the tumour recurrences. Here the cluster

sizes ni range from 1 to 14. Censoring (approximately 17%)
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Table 1. The estimated results of various likelihood methods under
semiparametric gamma frailty model for the kidney infection data (m,
marginal likelihood; h, h-likelihood; α, gamma frailty variance; β,
regression parameter)

Method Maximized likelihood α̂ β̂

m* -240.164 0.388 -1.535 
p*

u(h) -240.906 0.317 -1.461 
p*s

u (h) -240.162 0.389 -1.536 
pu(h*) -240.136 0.404 -1.549 
ps

u(h*) -239.266 0.487 -1.618 
pw(m) -195.748 0.486 -1.617 
pβ,u(h*) -240.082 0.436 -1.577 
ps

β,u(h*) -239.107 0.522 -1.643 
pβ,w(m) -195.589 0.520 -1.642 

Note: pw(m)�ps
w,n(h)==ps

u(h*)++c,
pw,β (m)�ps

w,β,u(h)==ps
β,u(h*)++c and c==43.521
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occurred when no new tumour was found. We also use a single

fixed covariate xij (==1 for treatment and for control). We find

that the results in Table 2 are very similar to those evident in

Example 1.

Simulation Study

Numerical studies, using 200 replications of simulated data,

are presented to investigate the performances of the likelihood

methods based on marginal- and h-likelihood. We again con-

sider the semiparmetric gamma frailty model.

Under no censoring we generate data assuming the exponen-

tial baseline hazard λ0(t)==1, one standard normal covariate

with β==1, and α==0.5, 1.0. We consider n==»q
i==1 ni with n==

100, 200 and (q, ni)==(100, 1), (100, 2), (200, 1). Notice here

that we chose fairly extreme cases, the no censoring and small

sample size, because these situations yielded the most biased

estimates of α̂ in the simulation studies by Nielsen et al. [3] and

Barker and Hendersion [9]. Moreover, if satisfactory results

could be obtained for these, good results would follow more

generally. For the fitting we used the four comparable likeli-

hoods, p*s
u (h), ps

u(h
*), and ps

β ,u(h
*). From 200 replications of

simulated data we compute the mean, standard deviation and

mean squared error for β̂ and α̂. For the computation we used

SAS/IML.

The results are summarized in Table 3. Overall, these results

confirm those from numerical examples in Section 5. As expect-

ed, the bias increases with frailty and decreasing sample size.

The estimates from m* and p*s
u (h) show about the same results,

but they gives severely downward biases in all cases consider-

ed, especially in or frailty parameters α. Moreover, the under-

estimation of α leads to that of β. Table 3 also demonstrates

that the two profile likelihood methods, ps
u(h

*) and ps
β ,u(h

*), eli-

minating the nuisance parameters w reduce effectively such

biases. Here the ps
u(h*) method slightly performs better than in

the ps
β ,u(h

*) method. This may be a result due to the considera-

tion of a single covariate or small frailty variance.

Comparison of h-likelihood and 
Bayesian Approach

In Bayesian framework fixed parameters (β, α) are treated

as random variables, so that they require a prior (distribution)

π (β, α). Here we assume its independence, π(β, α)==π (β)∙

π (α).

Applying the Bayes theorem, the joint posterior density for

semiparametric frailty models (1) with nonparametric baseline

hazards is proportional to [20]: 

π(β, u, α ⎜y*)∝π(y*⎜u, β)∙π(u ⎜α)∙π(β)∙π(α).

Note that fβ(y*⎜u)==π(y*⎜u, β) and fα(u)==π(u ⎜α). From (2) and

(9) we see that fβ(y*⎜u) is a conditional partial likelihood elim-

inating λ0 given u, leading to fβ(y*⎜u)∙fα(u)==exp(h*). Thus

we have 

log{π(β, u, α ⎜y*)}∝h*++logπ(β)++logπ(α).

In particular, for the Bayesian inference Ducrocq & Casella

[21] and Legrand et al. [20] assumed uniform priors (i.e. flat

priors), π(β)==1 and π(α)==1. Under the assumptions, we also

see that the log-joint posterior log{π(β, u, α ⎜y*)} is equivalent

to the profile h-likelihood h* in (9): see also Rigby & Stasino-

poulos [22] and Abrahantes et al. [23]. For the estimation of β
and u, the log-joint posterior is maximized over (β, u) given α
[20].

Furthermore, for the estimation of frailty parameters α Le-

grand et al. [20] used the marginal posterior of α, given by 

π(α ⎜y*)== π(β, u, α ⎜y*) dβdu ∝ exp(h*) dβdu,

whose Laplace approximation becomes the adjusted profile h-

likelihood, exp{pβ,u(h
*)}) in (10): see also Rigby & Stasinopo-

ulos [22] and Rue et al. [24].

In summary, under the uniform prior we have that 

log{π(β, u, α ⎜y*)}∝h* and  log{π(α ⎜y*)}�pβ,u(h
*). (12)

Hence, from (12) we confirm that in frailty models, as in

HGLMs [25], the h-likelihood method also gives an approxi-

Table 2. The estimated results of various likelihood methods under
semiparametric gamma frailty models for the mammary tumour data
(m, marginal likelihood; h, h-likelihood; α, gamma frailty variance;
β, regression parameter) 

Method Maximized likelihood α̂ β̂

m* -1180.620 0.247 -0.822 
p*

u(h) -1181.152 0.222 -0.818 
p*s

u (h) -1180.619 0.247 -0.822 
pu(h*) -1180.539 0.254 -0.823 
ps

u(h*) -1179.958 0.282 -0.827 
pw(m) -1153.494 0.283 -0.827 
pβ,u(h*) -1181.147 0.273 -0.825 
ps

β,u(h*) -1180.541 0.301 -0.829 
pβ,w(m) -1154.077 0.302 -0.829 

Note: pw(m)�ps
w,n(h)==ps

u(h*)++c,
pw,β (m)�ps

w,β,u(h)==ps
β,u(h*)++c and c==26.463



mation of the Bayesian inference under uniform prior. Notice,

however, that the Bayesian eliminates parameters by integra-

tion, while h-likelihood them by conditioning (or profiling) [25].

Discussion

We have studied various inference methods for semiparamet-

ric frailty models. We have showed that the h-likelihood appro-

ach is useful in profiling properly the nuisance parameters,

leading to reduce the bias of maximum likelihood estimator

from standard marginal likelihood. For complex frailty models

such as multi-component [5,26] or correlated frailties [27], the

h-likelihood can be easily extended because it avoids the inte-

gration itself, whereas the marginal likelihood requires intrac-

table integrations. In particular, the h-likelihood approach is

very useful to inference (e.g. prediction of heterogeneity) of

random effect (frailty) [25,27,28], but the marginal likelihood

can not be used directly for such inference because it eliminates

them by integration.

Furthermore, we have showed that under uniform prior (i.e.

flat prior) h-likelihood and Bayesian approaches lead to very

similar estimation results. However, the results of both appro-

aches may depend on the choice of priors for fixed parameters

(β, α). It would be very interested to study the sensitivity analy-

sis to prior specification, particularly for frailty parameter α
[29].
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u (h) 0.248 0.243 0.1224 0.892 0.204 0.0533
ps

u(h*) 0.510 0.392 0.1532 1.021 0.261 0.0682
ps

β,u(h*) 0.584 0.418 0.1812 1.054 0.264 0.0724

100 2 m* 0.432 0.182 0.0376 0.977 0.235 0.0553
p*s

u (h) 0.431 0.182 0.0377 0.977 0.235 0.0553
ps

u(h*) 0.484 0.202 0.0410 0.994 0.240 0.0575
ps

β,u(h*) 0.509 0.194 0.0375 1.005 0.239 0.0570

200 1 m* 0.320 0.227 0.0838 0.921 0.166 0.0337
p*s

u (h) 0.322 0.229 0.0841 0.922 0.167 0.0338
ps

u(h*) 0.487 0.297 0.0879 1.001 0.179 0.0320
ps

β,u(h*) 0.531 0.315 0.0994 1.023 0.187 0.0352

1.0 100 1 m* 0.419 0.363 0.4694 0.795 0.228 0.0935
p*s

u (h) 0.423 0.368 0.4679 0.797 0.229 0.0935
ps

u(h*) 0.885 0.617 0.3925 0.958 0.296 0.0891
ps

β,u(h*) 1.090 0.685 0.4753 0.962 0.327 0.1077

100 2 m* 0.902 0.240 0.0667 0.978 0.281 0.0790
p*s

u (h) 0.902 0.240 0.0669 0.978 0.281 0.0790
ps

u(h*) 0.994 0.258 0.0662 0.997 0.286 0.0813
ps

β,u(h*) 1.015 0.260 0.0673 1.002 0.287 0.0817

200 1 m* 0.625 0.301 0.2306 0.865 0.188 0.0535
p*s

u (h) 0.632 0.306 0.2280 0.868 0.189 0.0531
ps

u(h*) 0.992 0.439 0.1922 0.996 0.231 0.0531
ps

β,u(h*) 1.068 0.424 0.1838 1.024 0.208 0.0435

Note: q, No. of clusters; ni, cluster size; SD, standard deviation; MSE, mean squared error.
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