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Generalized Transfer Function Model

The transfer function model relates a variable to the present

and the past of other variables. The influence of one variable

on another can be spread over several time periods. Instantane-

ous and lagged effects of an input variable Xt on an output vari-

able Zt can be represented by a model in the form 

Zt==v(B)Xt (1)

where

ω(B)Bb

v(B)==mmmmmmmmmmmm . (2)
δ(B)

The operators v(B)==v0++v1B++v2B
2++..., ω(B)==ω0-ω1B-...-

ωsB
s and δ(B)==1-δ1B-...-δrB

r are polynomials in backshift

operator B, and b is a parameter representing the delay bet-

ween the variables. Furthermore, it is assumed that the roots of

δ (B)==0 are on or outside the unit circle. The relation between

coefficients vk and parameters w==(ω0,...,ωs)′, d==(δ1,...,δr)′
and b can be obtained by equating the coefficients of Bk in

δ(B)v(B)==ω(B)Bb. (3)

Model (1) is extended to the transfer function-noise model of

the form 

Zt==v(B)Xt++Nt (4)

where Nt is assumed to be uncorrelated with Xt. Refer to [1]. In

this article we introduce a generalized time series transfer func-

tion model 

q

Zt==»vi(B:wi,di(Xit))Xit++ut, (5)
i==1

which includes q independent input variables and allows the de-

pendence of di on Xit. Here, ut can be represented by an ARIMA

model. Note that this model assumes that for a given i, the past

Xit’s not only influence future Zt’s, but also determine the streng-

th of influence for the past Xits over a long period of time via

dependence of di on Xit. Note that when δi is close to 1, it im-

plies a strong or long range dependence of Xit.

Time series are frequently affected by exogenous events usual-

ly referred to as interventions. Interventions can affect the

response in several ways. They can change the level of a series

either abruptly or after some delay, change the trend, or lead to

other, more complicated, effects. The generalized transfer func-

tion model in (5) can be utilized to determine whether there is

evidence that such a change in the series has actually occurred

Quantitative Bio-Science 32(1), 17~24(2013)

Using Generalized Time Series Transfer Function Model for
Automated Water Quality Monitoring

Cheolyong Park, Ji Eun Moon, Gyu Moon Song, Tae Yoon Kim*

Department of Statistics, Keimyung University, Daegu 704-701, Korea
(Received March 25, 2013; Revised April 20, 2013; Accepted May 5, 2013)

ABSTRACT

In this article we propose a generalized time series transfer function model and apply it to building a water quality

monitoring algorithm (WQMA) and waste dumping simulation algorithm (WDSA). Our empirical experiments indicate

that WQMA is quite effective against various dumping situations simulated by WDSA. In particular, it is interesting to

report that WQMA might even identify furtive waste dumping such as dumping with rain. 

Key words : Automated water quality monitoring, Generalized transfer function model, Waste dumping simulation
algorithm

* Correspondence should be addressed to Dr. Tae Yoon Kim, Department of Statistics, College of Natural Sciences, Keimyung University, Daegu 704-701, Korea.
Tel: +82-53-580-5533, Fax: +82-53-580-5164, E-mail: tykim@kmu.ac.kr



and, if so, its nature and magnitude. In fact, we introduce, for

the effect of interventions, the transfer function-noise model

of the form

q

Zt==»vi(B:wi,di(Iit))Iit++ut, (6)
i==1

where Iit is an indicator sequence reflecting the absence and

presence of an intervention (or Iit(T)==1 if t==T and zero, other-

wise). In (6), prior to the intervention, ut and Zt are the same

and can be represented by an ARIMA model. In (6), we have

q types of interventions and a given i th type intervention Iit,

which has spread influence according to di(Iit) and wi. For

possible choices of v(B:w,d) in (6), one may consider v(B:

w,d)==ω01/(1-B) for a step change at time T, v(B:w,d)

==ω02/(1-δB) for an initial increase followed by a gradual

decrease without the lasting effect and v(B:w,d)==[ω01/(1-

δB)]++[ω02/(1-B)] for an initial increase followed by a grad-

ual decrease with lasting effect ω02.

Time series are influenced by repetitious interventions, e.g.,

waste dumping against water quality time series. If the timing

of such interventions is known, intervention models can be

used to account for their effects. However, in practice, the

timing is frequently unknown. Because the effects of inter-

ventions can bias the parameter estimates, forecasts, and seaso-

nal adjustments, it is important to develop procedures that can

help detect and remove such effects. This is known as the

problem of outliers or spurious observations [2]. discusses two

characterizations of outliers in the context of time series models.

The aberrant observation model is as follows:

ut
*==ut++ωIt(T) and, φ (B)ut==θ(B)at (7)

the aberrant innovation model is as follows: 

ut
*==ut++φ-1(B)θ(B)ωIt(T )==φ-1(B)θ(B)[at++ωIt(T )] (8)

Here, ut
* denotes the observed time series, ut is the underlying

ARIMA process without the impact of outliers and at refers to

white noise. In the aberrant observation model, only the level

of the Tth observation is affected. In the aberrant innovation

model, the outlier affects the shock at time T, which in turn

influences uT,uT++1. Refer to [1] for its detailed explanation. 

Water Quality Monitoring vs Waste Dumping

The traditional approach to water quality monitoring in-

volves manually sampling water at remote sites and transpor-

ting it to a laboratory for chemical analysis. This approach,

while relatively non-technical and easily repeatable, does not

allow for continuous data collection and monitoring. Recently,

new technology and instrumentation have developed water

quality monitoring stations, which are able to monitor water

quality continuously regardless of weather and accessibility

(see, e.g., [3-6]). This advanced water quality monitoring sta-

tion provides water quality data for documenting spatial and

temporal changes in water quality, identify and respond to

pollution or other water quality episodes, and compare water

quality to various water standards (e.g., drinking, agriculture,

industry or fishery standards). In this section, we are mainly

concerned about using the generalized time series transfer

function model for monitoring water quality, particularly iden-

tifying illegal dumping waste by individual or firm through

continuous automated station monitoring. Note that dumping

still occurs illegally almost everywhere, although dumping

waste is well known to have serious economic and health

impacts by killing aquatic life and damaging the habitats and

ecosystems (see [7-9]). 

In order to operate the station for identifying or detecting

dumping waste, the water quality monitoring algorithm (WQMA)

was built, which focuses and finds an appropriate model for

water quality time series data “under the normal condition.”

The underlying idea of WQMA is that if the normal move-

ment of water quality over time is figured out successfully,

then one would be able to identify waste dumping effectively

by detecting the moment when the temporal water quality path

deviates from its normal path significantly. This approach is

quintessential for detecting waste dumping because it is almost

impossible to model waste dumping into a temporal process

based on past waste dumping episodes. More specifically, in

most cases, we do not have sufficient information for building a

wasting dumping process because most waste dumping fre-

quently occurs without being caught and recorded. Note that

waste dumping tends to be performed during nighttime, week-

ends or when it rains in order to avoid surveillance by govern-

ment authorities. For modeling the normal temporal path of

water quality, one should obtain water quality data under nor-

mal conditions, which are not only free from waste dumping

but which also reflect the change of the water quality due to

natural occasions. For example, the normal condition should

relate to the seasonal effect (i.e., water quality changes perio-

dically with season) or rainfall effect (i.e., water quality im-

proves with rainfall). However, it is hard to gather such data

since in reality, water quality data tend to be contaminated by
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unidentified sources, including waste dumping. Such diffi-

culty is resolved by employing the generalized time series

intervention model of Section 1, which effectively extracts or

isolates waste dumping from the contaminated water quality

time series data. Keep in mind that the time series interven-

tion model is useful in isolating the unusual external events

that influence or intervene in the normal path of the time series

of concern. 

In order to investigate the performance of WQMA, it is

applied and then tested against in both empirical and simulat-

ed situations. Our test results show that WQMA reports quite

accurate and sensitive performances in identifying waste dump-

ing, particularly furtive ones such as rain dumping. At this

juncture, it is worth mentioning that we newly built a waste

dumping simulation algorithm (WDSA) that simulates various

waste dumping episodes. Taking into account the difficulty

for testing WQMA with the real data whose waste dumping

episodes are completely known, the construction of WDSA is

an essential pillar of the current work. It will be noticed later

that we have employed model (6) and the outlier removal

procedure based on model (7) for constructing WQMA, and

that model (5) has been used for WDSA. Finally, it should be

noted that until now, the time series model for water quality

data has been employed mainly for prediction; however, we

extend the model for monitoring and simulation purposes (see

[10-14]). 

WQMA and WDSA

1. WQMA construction

In order to develop WQMA using the generalized transfer

function model, let Z be the selected variable for water quality

monitoring by the station and {Zt:t==1,2,...} be a sequence of

their observations. Assume that {Zt:t==1,2,...} follows a time

series intervention model, i.e.,

Zt==f0(t)++f1(I1l(t),...,I1p1
(t))++f2(I2l(t),...,I2p2

(t))++ηt

==f0(t)++f1(t)++f2(t)++ηt (9)

where f0(t) denotes a time trend function, f1(t) and f2(t) denote

the time series intervention model for the rainfall effect and

dumping waste effect, respectively, where

1    t==RjI1 j(t)=={ for   j==1,...,p10    otherwise

and

1    t==DjI2 j(t)=={ for   j==1,...,p2.
0    otherwise

Indeed rainfall and dumping wastes occur at t==R1,...,Rp1
and

t==D1,...,Dp2
respectively and {ηt:t==1,2,...} is a stationary

ARMA (u,v) (auto-regressive moving average) process (i.e.,

φ(B)ηt==θ(B)at). 

As mentioned in Section 2, the main objective of WQMA is

to figure out ηt++f0(t)++f1(t), which describes the normal evolu-

tion of Zt over time, say Zt
(N). In order to specify f0 and f1, we

employ

p1

f0(t)==α0 and f1(t)==f1(I11(t),...,I1p11
(t))==α1»I1 j(t). (10)

j==1

For f2, we employ the following time intervention model: 

f2(t)==f2(I21(t),...,I2p2
(t))

ω1(B)Bb1 ωp2
(B)Bbp

2

==mmmmmmmmmmmmm I21(t)++...++mmmmmmmmmmmmmmm I2p2
(t), (11)

δ1(B)                          δp2
(B)

where ωi(B)==ωi0-ωi1B-...-ωisi
Bsi and δi(B)==δi0-δi1B-

...-δiri
Bri for i==1,...,p2, B is a backshift operator, and bi de-

notes the delayed time for the intervention effect. Also, f2 is

used mainly because Zt is subject to the influence of waste dump-

ing over a certain duration of time after its occurrence. Now,

model (9) is in fact model (6), where 

p1

ut==f0(t)++ηt,    v1(B:w1,d1(I1t))I1t==»α1I1 j(t)==f1(t)
j==1

p2 ωj(B)Bbj

v2(B:w2,d2(I2t))I2t==»mmmmmmmm I2 j(t)==f2(t).
j==1 δj(B)

Assuming that the training data set {Zt:t==1,...,n0} and {R1,
...,Rp1

}, WQMA is trained by the data of size n0 currently

available and is applied to the test data of size n1 streaming

into WQMA immediately after its training. Thus, the main fea-

ture of the WQMA is that it is designed for automatic imple-

mentation on a relatively short period of time so that it might

be easily updated for real-time monitoring of water quality.

Let {Zt:t==1,2,...,n0} and {Zt:t==n0++1,...,n0++n1} denote training

and testing data set, respectively. Then, WQMA can be des-

cribed as follows:

(Step 1) With the training data and precipitation points R1,
...,Rp1

available, fit Ẑt
(N)==η̂t++ f̂0(t)++ f̂1(t) and then find  D̂1,

..., D̂P2
as outliers. 

(Step 2) Using D̂1,...,D̂P2
obtained from Step 1 together with

the training data and precipitation points, build the final



model  Ẑt==η̂t++ f̂0(t)++ f̂1(t)++ f̂2(t).

(Step 3) Using the results from Step 2, calculate the residuals

et==Zt- f̂2(t)-Ẑt
(N) for t==1,...,n0, where Ẑt

(N)==η̂t++ f̂0(t)++

f̂1(t). With these residuals e==(e1,...,en0
), estimate its mar-

ginal distribution N(μ̂e, σ̂
2
e) by assuming the normality of e. 

(Step 4) For t==n0++1,...,n0++n1, calculate the corresponding

residuals et
(1)==Zt-Ẑt

(N). If et
(1)==Zt-Ẑt

(N) exceeds the 95th-

percentile of N(μ̂e, σ̂
2
e), a warning is issued. 

Remarks. There are several technical aspects to be discuss-

ed regarding the automated WQMA. First, models (7) and (6)

(generalized time series intervention models) provide the

basic tools to (Step 1) and (Step 2). Recall that because it is

usually hard or impossible to obtain the exact information about

D1,...,Dp2
(p2 waste dumping time points) from the training

data in practice, they are to be estimated as  D̂1,..., D̂P2
in order to

build f̂2. In order to estimate them, we predefine D1,...,Dp2
at

which the Zts are outliers from the training data and find them

by hiring an outlier detection process (model (7)). Second,

real-time monitoring usually refers to fine scale monitoring

on the time domain and hence, a relatively short period (or

microscopic) of monitoring is preferred. Because the constant

function would be sufficient as the basis function over a short

period of time, we use the constant function for f0 and f1.

Third, residual et of (Step 3) estimates ηt in model (9), where-

as residual eT
(1) of (Step 4) estimates the error when there is no

waste dumping. More specifically, the difference between eT

and eT
(1) is estimating the effect purely due to dumping waste,

if it exists, and hence the difference is clearly a reasonable test

statistics that tests the null hypothesis H0: there is no dumping

waste, or the underlying difference is zero. Using R, Song et

al. [15] completed an algorithm that implements WQMA

automatically. Their algorithm uses n0==200 training data and

n1==40 testing data and is conducted by the aid of automatic

ARMA (u,v) model selection and outlier detection R algorithm.

2. WDSA construction

For testing the efficacy of auto-WQMA, we need the test

data set to have exact information regarding waste dumping

points D1,...,Dp2
. However, it will be almost impossible to ob-

tain such data from the real situation because illegal dumping

moments are always unknown unless they get caught. This

strongly suggests the need to develop an algorithm which vir-

tually simulates dumping under various situations. Regarding

the precipitation simulation, on the other hand, one needs to

consider not only the precipitation itself, but also its amount.

In particular, we are interested in the situation where dumping

is made with rain. This is needed because waste dumping

tends to conspicuously increase under heavy rain, such as

hurricanes and typhoons. Note that heavy rain will dilute and

wash out the polluted surface water with its lasting impact,

whereas light rain will not be able to dilute the polluted

surface water almost at all. 

Assuming model (9) based on model (5), we consider Xt, the

precipitation amount at t, as the predictor for f1, and model f1

as 
p1 g1(Xt)f1

(s)(t)==v1(B:w1,d1(XtI1t))XtI1t==»mmmmmmm I1j (t), (12)
j==1 g2(Xt,B)

where I1j(t)==1 if it rains at t and ==0 otherwise, g1(Xt)==β1Xt

for positive constants β0 and β1, and g2(Xt,B)==1-ρ (Xt,β2)B,

Xtwhere ρ(Xt,β2)==mmmmmm for some β2¤0. Here, g1(Xt) assumes
Xt++β2

that Xt proportionately determines the degree of water quality

improvement and g2(Xt,B) assumes that Xt influences the last-

ing impact of the precipitation decaying exponentially over time.

XtNote that ρ(Xt,β2)==mmmmmm as a function of Xt (›0) approaches
Xt++β2

1 from below as Xt increases to infinity. In other words the

lasting impact of precipitation over time elongates as preci-

pitation amount Xt increases. As a result, we employ 

p1 β1Xtf1
(s)(t)==v1(B:w1,d1(XtI1t))XtI1t==»mmmmmmmmmmm I1t(t). (13)

j==1 Xt1-mmmmmmB
Xt++β2

Here, (13) is reasonable because it stipulates that precipitation

Xt has a linear relation on Zt (water quality measurement) and

its exponentially decaying impact on Zt, over time comes strong

with large Xt. 

For modeling f2, recalling that the intervention term could

measure the lasting impact of the external events, we assume 

p2 ωj(B)Bbj p2 β3f2
(s)(t)==»mmmmmmm I2 j(t)==»mmmmmmm I2 j(t), (14)

j==1 δj(B)            j==1 1-β4B

where β4==β3/c and 0⁄β3⁄c for some fixed positive constant

c. Here, β3 might be related to the degree of waste dumping

and β4 (⁄1) is proportional to β3. A more sophisticated model,

such as f1
(S) above, is possible by quantifying the degree of

waste dumping quantitatively. Now our waste dumping simu-

lation algorithm produces Zt s from 

Zt==f0
(s)(t)++f1

(s)(t)++f2
(s)(t)++ηt, (15)

where f0
(S)(t)==β0 and ηt is an ARMA process. Note that mo-
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del (15) is a generalized transfer function model with exo-

genous Xt variable. 

Empirical Experiment 

A good example of Zt, for our model and algorithm, is the

chemical oxygen demand (COD). When COD is the variable

of major interest or Zt, one may consider a sudden increase of

COD (or outlier of Zt) as a form of possible waste dumping

because a high COD value tends to relate to a serious effluent

from the pollution source. In fact, most governments impose

strict regulations regarding the maximum COD for water in

possible effluent tracts [16]. Based on this, our empirical experi-

ment considers the following episode. For monitoring the water

quality of “River A” close to Seoul in Korea, an automated

water quality measurement station was installed by the govern-

ment environment agency, which monitors continuously the

related parameters, such as nitrate and COD. One of the main

aims of the station is to monitor water quality of the river aga-

inst possible dumping waste. It is known that a primary sou-

rce of dumping waste is the industrial firms near the river. From

her past experience, the concerned government agency com-

prehends that rainfall dumping tends to be made quite often.

In order to handle this factor in detecting waste dumping into

River A, we first apply manual WQMA to the COD values of

River A and study how WQMA works before the automated

WQMA (a-WQMA) is tested against the data simulated by

WDSA. This proves that WQMA is quite efficient in identify-

ing waste dumping into the river. 

COD measurements Z1,...,Z240 were made and recorded

every two hours during June 1-June 30, 2005. For construc-

ting a properly estimated time series intervention model, the

first 200 data Z1,...,Z200 are used for fitting and the remaining

40 data Z201,...,Z240 are reserved for testing. The time plot for

Z1,...,Z200 is given in Fig. 1. For building f1, it is confirmed that

a significant amount of rain fell at t==43, 44, 45, 46, and 49.

Also, WQMA manually detects four outliers at t==18, 23, 45,

197 for building f2 by eye examination. Here, t==45 is detect-

ed because it shows an unusually high value during the rain

period. Using the 200 training data together with this informa-

tion, the time series intervention model is fitted to yield 

Ẑt== 4.70++0.61Zt-1++0.20Zt-2++17.50I18(t)++14.39I23(t)

40.63
++9.69I45(t)++mmmmmmmm I197(t)-4.66IR(t), (16)

1-0.51B

where Ik(t)==1 if t==k or 0 otherwise, and IR(t)==1 if it rains at

t. The indicator variable I’s are used for handling the outliers

(t==197, 18, 23, and 45, see Fig. 1) and the rain fall effect.

Note that IR(t) and Ik(t) correspond to I1 j(t) and I2 j(t), respec-

tively. Thus, by using (16), we have 

η̂t==0.61Zt-1++0.20Zt-2,   f̂0(t)==4.70,   f̂1(t)==-4.66IR(t), and

40.63
f̂2(It)==17.50I18(t)++14.39I23(t)++9.69I45(t)++ mmmmmmmm I197(t).

1-0.51B

(17)

Fig. 1. Plot of COD during 6.1-6.30, 2005. 
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From (17), one may observe the followings: (i) Outlier at

t==197 has a lasting impact cut by half every two hours (i.e.,

1
mmmmmmmm ==1++0.51B++(0.51B)2++...), whereas outliers at t==18,
1-0.51B

23, 45 appear to have an isolated impact (recall it rained on

t==45). (ii) Rain tends to decrease the COD value significantly

(i.e., -4.66IR(t)). (Step 1) and (Step 2) have been implement-

ed now.

For (Step 3), we have 

Ẑt
(N)==η̂t++ f̂1(It)== 4.70++0.61Zt-1++0.20Zt-2-4.66IR(t). (18)

Using (18), we can calculate the residuals for t==1, ..., 200 by

using the following:

et==Zt-Ẑt
(N) (19)

and then, a corresponding distribution was estimated by N

(μ̂e, σ̂
2
e). With the estimated  F̂e, one may calculate the p-value

p(t) for 40 test data, which completes (Step 3) and (Step 4) of

WQMA. In fact, the plot for et and the corresponding p-value

p(t) for the test data is given in Fig. 2. From Fig. 2, one may

easily observe that WQMA issues three warnings at t==201,

203 and 224 due to their corresponding p-values, which are

less than 0.05. While dumping at t==203 and 224 could be sug-

gested strongly in terms of COD values, t==201 appears to be re-

lated to the lasting impact of the previous major dumping made

at t==197. 

In order to evaluate the performance of a-WQMA (and

hence WQMA) under simulated situations, we simulate various

waste dumping situations via WDSA. Indeed we employ 

Zt
(s)== f0

(s)(t)++f1
(s)(t)++f2

(s)(t)++ηt
(s) (20)

where ηt
(s)==0.61Zt-1

(s)++0.20Zt-2
(s) ++εt

(s), εt
(s)~N(0,1), f0

(s)(t)==-1.7

p1 0.062Xtf1
(s)(t)==v1(B:w1,d1(XtI1t))XtI1t==»mmmmmmmmmmm I1 j (t)

j==1 Xt1-mmmmmmB
Xt++25

p2 β3and  f2
(s)(t)==» mmmmmmmmm I2 j (t)

j==1 1-β3B/10

for selections of 0⁄X‹50 and 0⁄β0‹10. For evaluation

purposes, we generate the 300 data T=={Z1
(s),...,Z300

(s) }, which con-

sists of training data T1=={Z1
(s),...,Z 200

(s)} and testing data T2==

{Z 201
(s) ,...,Z 300

(s)}, i.e., T==T1∪T2. Here, T is designed to contain 10

dumping waste and 10 precipitation time points (i.e., p1==p2==

10 or 10 I1s and 10 I2s). Furthermore, T2 is designed to con-

tain at least 4 cases or time points at which raining and dump-

ing occur simultaneously. Such cases are selected randomly

over t==1,...,300. In addition, note that the selection of X value

(the precipitation amount) for I1 or the selection of β3 value

22 Quantitative Bio-Science  Vol. 32, No. 1, 2013

Fig. 2. Plot of residuals and their p-values.
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for I2 is made randomly from the given ranges in each case. 

As competitors with a-WQMA, two simple algorithms for

waste dumping detection are considered, i.e., upper 5th per-

centile method and fixed boundary method. The upper 5th per-

centile method issues a warning when Zt
(s) for t==201,...,300

(COD value in test data T2) exceeds the upper 5th percentile of

T1=={Z1
(s),...,Z 200

(s) } (COD values in training data) while the

fixed boundary method issues a warning when Z t
(s) for t==201,

...,300 exceeds the fixed bound 8.4. For comparison of the

three methods, we consider 3 simulated situations, i.e., dump-

ing with rain, dumping without rain and no dumping. Recall

that each dumping or rain has a different impact on COD values

afterwards due to the dependence on its own X and β3. Also,

recall that our simulation produces 10 t’s of dumping and 10

t’s of rain with at least 4 t’s of dumping rains inside T2. For a

quantitative performance evaluation of a-WQMA, 110 realizat-

ions of (20) are performed in order to obtain the detection rates

by each method for the three possible situations. Here, the de-

tection rate is formally given by

DRI== (the number of detections made for the situation I on

201‹t‹300)

/ (the number of t’s belonging to the situation I on

201‹t‹300). 

For instance, note that the denominator of DRI is between 4

and 10 if the situation I is dumping with rain. 

In Table 1, the experiment results are summarized. It is

worth mentioning that across all situations a-WQMA excels

other competitors uniformly. For dumping with rain situation

it dominates the others outstandingly. For dumping without

rain, a similar notice can be made through a-WQMA domi-

nance, which is not as strong as the dumping with rain situa-

tion. Note that for the above two situations, a higher detection

rate means better performance. For no dumping situation, a-

WQMA excels the other competitors. Note here that for the

no dumping situation, the lower detection rate means better

performance. 
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