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Introduction

Quantile regression has been a popular method for estimat-

ing the quantiles of a conditional distribution on the values of

input variables since Koenker and Bassett [1] introduced linear

quantile regression.

Just as classical linear regression methods based on minimiz-

ing sum of squared residuals enable us to estimate a wide vari-

ety of models for conditional mean functions, quantile regres-

sion methods offer a mechanism for estimating models for the

full range of conditional quantile functions, including the con-

ditional median function. By supplementing the estimation of

conditional mean functions with techniques for estimating an

entire family of conditional quantile functions, quantile regres-

sion is capable of providing a better statistical analysis of the

stochastic relationships among random variables. An introduc-

tion to, and look at current research areas of quantile regression

can be found in [2-5].

Support vector machine (SVM) is used as a new technique

for regression and classification problems. The SVM is based

on the structural risk minimization (SRM) principle, which

has been shown to be superior to the traditional empirical risk

minimization (ERM) principle. SRM minimizes an upper bound

on the expected risk, unlike ERM, which minimizes the error

on the training data. By minimizing this bound, high general-

ization performance can be achieved. In particular, for the

SVM regression case, SRM results in regularized ERM with

e-insensitive loss function. Introductions to and overviews of

recent developments of SVM and kernel machines can be

found in [6-8].

Sparsity is known as an important feature of kernel regres-

sion models. It provides efficiency in predicting the regression

function, which implies that the predicted regression function

of the test data can be obtained with the small number of data

in the training data set. SVM provides sparsity in which the

number of support vectors depends on the number of training

data and the size of insensitivity. A small number of support

vectors implies sparsity of the model. Tipping [9] proposed a

Bayesian approach referred to as the relevance vector machine,

providing more sparsity. However the relevance vector machine

has computational problems since there are no closed-form

solutions for maximizing the marginal likelihood.

SVQR can be obtained by applying SVM with a check func-
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tion instead of an e-insensitive loss function into the quantile

regression [10,11]. But SVQR does not provide sparsity due

to zero insensitiveness of check function. Here we define sup-

port vectors as the index numbers corresponding to nonzero

Lagrange multiplier differences.

In this paper we use the weighted quadratic loss function

and l1 norm penalty term instead of the check function and l2

norm penalty term used in SVQR, which leads the fast compu-

tation and the sparsity of the model. In Section 2 we briefly

review SVQR using quadratic programming. In Section 3 we

propose the sparse SVQR which uses iterative reweighted least

squares procedure. In Section 4 and 5 we perform numerical

studies through artificial examples and give the conclusions,

respectively.

Support Vector Quantile Regression

Let the training data set denoted by (xi, yi)
n
i==1, with each input

xi∈Rd and the response yi∈R, where the output variable yi is

related to the input vector xi. Here the feature mapping function

φ (∙) : Rd→Rdf maps the input space to the higher dimensional

feature space where the dimension df is defined in an implicit

way. An inner product in feature space has an equivalent kernel

in input space [12], φ (xi)′φ (xj)==K(xi, xj). Several choices of the

kernel K (∙,∙) are possible. We consider the nonlinear regres-

sion case, in which the quantile regression function q(xi) of

the response given xi can be regarded as a nonlinear function

of input vector xi such as qθ(xi)==ω′φ (xi)++b.

With a check function ρθ (∙), the estimator of the θ th quan-

tile regression function can be defined as any solution to the

optimization problem,

n

min l (qθ l x)==»ρθ (yi-q (xi)) (1)
i==1

where ρθ (r)==θrI(r›0)++(1-θ )rI(r⁄0).

We can express the regression problem by formulation for

SVM as follows.

1   n

min L==mmw′w++C»(θξi++(1-θ )ξi
*) (2)

2 i==1

subject to

yi-w′φ (xi)-b‹ξi, w′φ (xi)++b-yi‹ξi
*, ξi , ξi

*›0,

where C is a positive regularization parameter penalizing the

training errors.

We construct a Lagrange function as follows:

1   n n

L==mmw′w++C»(θξi++(1-θ )ξi
*)-»αi(ξi-yi++w′φ (xi)++b)

2 i==1 i==1

n n

-»αi
* (ξi

*++yi-w′φ (xi)-b)-» (ηiξi++ηi
*ξi

*). (3)
i==1                               i==1

We notice that the positivity constraints αi, αi
*, ηi , ηi

*›0

should be satisfied. After taking partial derivatives of (3) with

regard to the primal variables (w, b, ξi, ξi
*) and plugging them

into (3), we have the optimization problem with φ (xi)′φ (xj)==

K(xi, xj) below.

1 n n

max -mm»(αi-αi
*)(αj-αj

*)K (xi, xj)++»(αi-αi
*)yi (4)

2 i, j==1 i==1

with constraints

n

0‹αi‹θC, 0‹αi
*(1-θ )C and »(αi-αi

*)==0.
i==1

Solving the above equation with the constraints determines

the optimal Lagrange multipliers, αi, αi
*, the estimator of the

θ th quantile regression function given the input vector xt is

obtained as follows:

n

q̂θ(xt)==»K (xt, xi)(α̂i-α̂i
*)++b̂. (5)

i==1

Here b̂ is obtained via Kuhn-Tucker conditions [13] such as,

1
b̂==mm»(yi-K(xi, x) (α̂α- α̂α*)), (6)

ns i∈Is

where α̂α==(α̂1,… , α̂n)′, α̂α*==(α̂1
*,… , α̂n

*)′ and ns is the size of

the set Is=={i==1,… , n l 0⁄α̂i⁄Cθ , 0⁄α̂1
*⁄C(1-θ )}.

The functional structures of SVQR is characterized by the

hyper-parameters, C and the kernel parameters. To select the

hyper-parameters of SVQR we consider the cross validation

(CV) function as follows:

1 n

CV(λ)==mm»ρθ (yi-q̂θ (xi)
(-i)), (7)

n i==1

where λ is the set of hyper-parameters and q̂θ (xi)
(-i) is the quan-

tile regression function estimated without ith observation. Since

for each candidates of parameters,  q̂θ (xi)
(-i) for i==1,… , n,

should be evaluated, selecting parameters using CV function

is computationally formidable. Yuan [14] proposed the gener-

alized approximate cross validation (GACV) function to select

the set of hyper-parameters λ for SVQR as follows:
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n

»ρθ(yi-q̂θ (xi))
i==1

GACV (λ)==mmmmmmmmmmmmmmm , (8)
n-trace(H)

where H is the hat matrix such that q̂(θ l x)==Hy with the (i, j)th
∂q̂θ (xi)element hij==mmmmmm . From Li, Liu and Zhu [15] we have that
∂yj

the trace of the hat matrix H equals to the size of set Is used in

(6).

Sparse SVQR Using IRWLS Procedure

With each input vector xi∈Rd and the response yi∈R, we

consider the regression model to estimate the quantile regres-

sion function,

yi==qθ (xi)++εi, i==1, 2,… , n, (9)

where εi is assumed to follow independently asymmetric Lapla-

cian distribution (θ, 0, σ) whose probability density function is

given as

θ (1-θ ) 1
f (y)==mmmmmmm exp·-mmρθ(y)‚.

σ               σ

The negative log likelihood of the given data set can be express-

ed as (constant terms are omitted)

1 n

l (qθ l x)==mm»ρθ(yi-qθ(xi)). (10)σ i==1

We consider the nonlinear regression case, in which the

quantile regression function q (xi) of the response given xi can

be regarded as a nonlinear function of input vector xi such as
qθ(xi)==Kiαα++b, where Ki is the ith row of K and (αα, b) are the

vector of n weights and a bias. Then the maximum likelihood

estimates of (αα, b) are obtained by minimizing the negative log-

likelihood function,

n

l (αα, b)==»ρθ(yi-Kiαα-b). (11)
i==1

The maximum likelihood estimates of (αα, b) generally lead

severe overfitting, we are encouraged to use a prior over αα.

Then the penalized maximum likelihood estimates (the maxi-

mum a posteriori estimates) of (αα , b) are obtained by minimiz-

ing the objective function,

L(αα, b)==l (αα, b)++log(p (αα )), (12)

where p (αα) is some prior over αα.

To have the sparsity on estimation of αα, we use a Laplacian

prior [16] such that

p (αα)∝ exp(-γ l lαα ll1),

n

where llαα l l1==»lαi l denotes l1 norm and γ is a positive constant.
i==1

The objective function can be rewritten as

L(αα, b)==l (αα, b)++γ l lαα l l1. (13)

Here γ controls the tradeoff between the goodness-of-fit on the

data and l lαα l l1.

The penalty term in objective function in (13) is not differen-

tiable with respect to αα and b, we need a modification of llαα ll1
for IRWLS procedure.

We define the objective function given αα* as

γ n αi
2

L(αα, b lαα*)==l (αα, b)++mm»·mmmm++lαi
* l‚, (14)

2 i=1 lαi
* l

then L(αα, b lαα*)›L(αα, b ) with equality if and only if αα==αα*

[17] but l(αα, b ) is not yet differentiable with respect to αα and

b.

We modify l(αα, b ) with the weighted quadratic loss func-

tion such as
n

l(αα, b )==»wti(θ )(yi-Kiαα-b)2

i=1

θ (1-θ )
where wti(θ )==mmmm I(ri›0)++mmmmmmmm I(ri⁄0) and ri==yi-Kiαα-b.

lri l lri l
Then the objective function (14) can be rewritten as follows:

n γ n αi
2

L(αα, b lαα*)==»wt(θ )(yi-Kiαα-b)2++mm»·mmm++lαi
* l‚.

i==1                                                 2 i==1 lαi
* l

(15)

Now the objective function L (αα, b lαα*) is differentiable with

respect to αα and b.

At t th iteration of IRWLS procedure, we have

n

L(αα, b l α̂α (t), b̂(t))==»wti(θ ) (yi-Kiαα-b)2

i==1    

γ n αi
2

++mm»·mmmm++lα̂i
(t) l‚. (16)

2 i==1 lα̂i
(t) l

Then the estimates of (αα, b ) are obtained by differentiating

L(αα, b l α̂α (t), b̂(t)) with respect to (αα, b ) as

KW (t)( y-Kαα-b)++γV (t)==0 and 1′W (t)(y-Kαα-b)==0

where W (t) and V (t) are the diagonal matrices consisted of



θ
1/lα̂i

(t) l and wti(θ ), respectively. Here wti(θ )==mmm I(ri›0)++
lri l

(1-θ )
mmmmmm I(ri⁄0), ri==yi-Kiα̂α

(t)- b̂(t). Thus the estimates of (αα, 
lri l

b ) are given as the solution of the linear equations:

α̂α KW (t) K++γV (t) KW (t)1 -1 KW (t)

==
1′W (t)

y. (17)
b̂ 1W (t)K 1′W (t)1

During iteration, we find that some αi’s tend to zero keeping

the value of objective function decreasing. This motivates that

we can find sparse estimates of αα which provide decreasing

value of the objective function at the same time.

We apply IRWLS procedure which starts with initialized values

of v==(1 : n)′ and (α̂α (0), b̂(0)) as follows:

1. Find W (t) and V (t) from (α̂α (v)(t), b̂(t)).

2. Find (α̂α(v)(t++1), b̂(t++1)) which minimizes L (αα(v), b l α̂α(v)(t),

b̂(t)).

3. Set α̂i
(t++1)==0 which is very close to zero. 

Find v=={i l α̂i
(t++1)≠0}.

4. Iterate 1-3 until l L(α̂α(v)(t++1), b̂(t++1))-L(α̂α(v)(t), b̂(t))l⁄Tol.

To select the hyper-parameters of sparse SVQR using

IRWLS, instead of the cross validation (CV) function used in

SVQR using QP with check function (1), we consider CV

function as follws:

1 n

CV(λλ)==m»wti(θ )(yi-q̂θ
(-i)(xi l λλ))2, (18)

n i==1

where λλ is a set of hyper-parameters and q̂θ
(-i)(xi l λλ) is the θ th

quantile regression function estimated without ith observation.

Since for each candidates of hyper-parameters, q̂θ
(-i)(xi l λλ) for

i==1,… , n, should be evaluated, selecting hyper-parameters

using CV function is computationally formidable. By using

leaving-out-one lemma [18] the ordinary cross validation

(OCV) function can be obtained as

where H is the hat matrix such that q̂θ(x l λλ)==Hy with the (i, j)

th element hij==∂q̂θ(xi)/∂yj. Here the hat matrix is given as

KWK++γV KW1 -1 KW
H==(K, 1)   

1′W ,1′WK 1′W1

where W and V are the final estimates. Replacing hii by their

average tr (H)/n, the generalized cross validation (GCV) func-

tion can be obtained as

n

n»wti(θ )(yi-q̂θ(xi l λ))2

i==1
GCV(λ)==mmmmmmmmmmmmmm . (20)

(n-tr (H ))2

Numerical Studies

In this section, we illustrate the performances of the proposed

sparse SVQR using IRWLS procedure through the simulated

examples by comparing SVQR using QP (SVQR_QP). RBF

kernel is utilized in numerical studies.

Example 1. An objective of microarray analysis is to identify

genes differently expressed under two distinct experimental

conditions. This task is complicated since the noisiness of data

exists and the large number of genes are examined. Sohn, Kim,

Hwang, Lee and Shim [19] applied SVQR on cDNA microar-

ray experiments to identify genes with different expression

levels between two types of samples and showed SVQR per-

formed well when error variability for each gene was hetero-

geneous in intensity ranges. We generate the artificial data set

of microarrays analysis similar to [19,20] by following steps:

1. Generate the true expression signal from an exponential dis-

tribution with mean 3000. Red (R) and green (G) channel

intensities for each gene are generated from a normal dis-

tribution with mean of true expression signal and standard

deviation of 15% of true expression signal, respectively.

2. Set 10% of genes to be over and under expressed. The select-

ed genes are converted to R× t and G/ t , where t==10g

or 10-g with same probability and g is generated from Beta

distribution with shape parameters 1.7 and 4.8.

3. Transform intensities nonlinear pattern with fG(z)==z (1-

exp(-z1000.9))-0.9 and fR(z)==z (1-exp(-z1000.7))-0.7.

We generate a training data set and a test data set of 500

genes with 50 differently expressed genes, respectively. The

standardized log ratio M==log2(R/G) and the average log inten-

sity A==log2 RG are used as response and input variable,

respectively. We repeated the above procedure 100 times. We

selected the optimal values of penalty and kernel parameter

using GACV function (8) and GCV function (20) for θ==0.975

and θ==0.025, respectively, for SVQR_OP and the proposed

SVQR. Fig. 1 shows the predicted quantile regression functions

by SVQR_QP (dotted lines) and by the proposed SVQR (solid

18 Quantitative Bio-Science  Vol. 33, No. 1, 2014

1 n                     yi-q̂θ (xi l λλ)  2

OCV (λλ)==m»wti(θ ) mmmmmmmmmmm
n i==1                            ∂q̂θ (xi l λλ)

1-mmmmmmmm
∂yi

1 n                       yi-q̂θ(xi l λλ)   2
==m»wti(θ ) mmmmmmmmmm

n i==1                             1-hii (19)
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lines), superimposed scatter plots of M versus A for one of 100

test data sets, where ++ denotes differently expressed genes. We

compared both average sensitivity and specificity. As shown in

Table 1, both methods provide almost same performance on

sensitivity and specificity. But the proposed SVQR has a higher

proportion of true genes selected than SVQR_QP though the

proposed SVQR has almost same number of genes selected as

SVQR_QP.

Example 2. We generate a data set in a similar manner to [21].

The univariate input variables x’s are drawn from a uniform

distribution U (0, π) and the corresponding responses y are

drawn from a univariate normal distribution with mean and

variance that vary smoothly with x as follows,

5x          3x       1 1               5x
y~N sin·mmm‚ sin·mmm‚, mmm++mm [ 1-sin·mmm‚] 2

.2              2       100    4             2 

We compare CPU-times of the proposed with that of QP com-

puted by the built-in function of MATLAB. Here (γ, C, σ2) are

fixed as (200, 200, 1.5). Table 2 shows CPU-times in seconds

of both methods (run MATLAB R2010a over Pentium IV at 4.0

GHz) on data sets with different sample sizes. From Table 2

we can see that the computation of the proposed SVQR is much

faster than that of SVQR_QP, which implies that the proposed

SVQR is appropriate method for the large data.

Conclusions

In this paper, we dealt with estimating the quantile regres-

sion function by sparse SVQR using IRWLS procedure, where

the weighted quadratic loss function and l1 norm penalty term

are used instead of the check function and l2 norm penalty term

in SVQR_QP. Through the examples we showed that the pro-

posed method derives the satisfying results - good prediction

ability and fast computation. We also found that sparse SVQR

using IRWLS procedure has an advantage other than SVQR_

QP, which is applicable to the large data set frequently found

in microarray data analysis.

Acknowledgements

This research was supported by Basic Science Research Pro-

Fig. 1. Predicted quantile regression functions by SVQR_QP (dotted
lines) and by the proposed SVQR (solid lines), superimposed scatter
plots of the log ratio versus the average log intensity.

M

5

4

3

2

1

0

-1

-2

-3

-4
7 8 9 10 11 12 13 14

A

Table 1. Average number of genes selected, average number of true genes selected, average sensitivity and average specificity for each pattern
(standard error in parenthesis).

No of genes selected No of true genes selected Prop of true genes selected Sensitivity Specificity

QP
39.2400 22.5400 0.5817 0.4508 0.9499
(0.7108) (0.3686) (0.0083) (0.0074) (0.0008)

Proposed
36.8400 22.4400 0.6203 0.4488 0.9501
(0.7349) (0.3817) (0.0101) (0.0076) (0.0008)

Table 2. CPU time of training the quantile model using SVQR_QP and the proposed SVQR for θ==0.1, 0.5, 0.9.

θ n QP Proposed θ n QP Proposed

0.1 100 4.9 0.9 0.1 500 56.4 13.5
300 48.7 3.6 700 501.1 175.6

0.5 100 3.2 0.9 0.5 500 61.8 12.1
300 48.3 4.1 700 488.3 176.2

0.9 100 3.2 1.0 0.9 500 59.7 11.2
300 48.3 5.1 700 490.2 181.4



gram through the National Research Foundation of Korea (NRF)

funded by the Ministry of Education, Science and Technology

(2012000646).

References

1. Koenker R, Bassett G. Regression quantile. Econometrica 1978;

46:33-50.

2. Koenker R, Hallock KF. Quantile regression. J Econ Perspect

2001;40:122-142.

3. Yu K, Lu Z, Stander J. Quantile regression: applications and

current research area. Statistician 2003;52:331-350.

4. Koenker R. Quantile regression. Cambridge: Cambridge Uni-

versity Press; 2005.

5. Shim J, Hwang C. Support vector censored quantile regression

under random censoring. Comput Stat Data An 2009;53:912-

917.

6. Vapnik VN. The nature of statistical learning theory. New York:

Springer; 1995.

7. Vapnik VN. Statistical learning theory. New York: John Wiley;

1998.

8. Smola A, Scholkopf B. On a kernel-based method for pattern

recognition, regression, approximation and operator inversion.

Algorithmica 1998;22:211-231.

9. Tipping ME. Sparse Bayesian learning and the relevance vec-

tor machine. J Mach Learn Res 2001;1:211-244.

10. Hwang C, Shim J. A simple quantile regression via support

vector machine. Lect Notes Comput Sc 2005;3610:512-520.

11. Takeuchi I, Le QV, Sears TD, Smola AJ. Nonparametric quan-

tile estimation. J Mach Learn Res 2006;7:1231-1264.

12. Mercer J. Functions of positive and negative type and their

connection with theory of integral equations. Philos T Roy Soc

A 1909;209:415-446.

13. Kuhn HW, Tucker AW. Nonlinear programming. Proceedings

of 2nd Berkeley Symposium: 481-492. Berkeley; July. 1951.

14. Yuan M. GACV for Quantile smoothing splines. Comput Stat

Data An 2006;50:813-829.

15. Li Y, Liu Y, Zhu J. Quantile regression in reproducing kernel

Hilbert spaces. J Am Stat Assoc 2007;102:255-268.

16. Williams PM. Bayesian regularization and pruning using a

Laplace prior. Neural Comput 1995;7:117-143.

17. Krishnapuram B, Carlin L, Figueiredo MAT, Hartermink AJ.

Sparse multinomial logistic regression: fast algorithms and

generalization bounds. IEEE T Pattern Anal 2005;27:957-968.

18. Craven P, Wahba G. Smoothing noisy data with spline functions:

estimating the correct degree of smoothing by the method of

generalized cross-validation. Numer Math 1979;31:377-403.

19. Sohn I, Kim S, Hwang C, Lee JW, Shim J. Support vector

machine quantile regression for detecting differently expressed

genes in microarray analysis. Method Inform Med 2008;47:459-

467.

20. Balagurunathan Y, Dougherty E, Chen Y, Bittner M, Trent J.

Simulation of cDNA microarrays via a parameterized random

signal model. J Biomed Opt 2002;7:507-523.

21. Cawley GC, Talbot NLC, Foxall RJ, Dorling SR, Mandic DP.

Heteroscedastic kernel ridge regression. Neurocomputing 2004;

57:105-124. 

20 Quantitative Bio-Science  Vol. 33, No. 1, 2014


